Metamath Proof Explorer


Theorem gcdn0cl

Description: Closure of the gcd operator. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion gcdn0cl MN¬M=0N=0MgcdN

Proof

Step Hyp Ref Expression
1 gcdn0val MN¬M=0N=0MgcdN=supn|nMnN<
2 eqid n|zMNnz=n|zMNnz
3 eqid n|nMnN=n|nMnN
4 2 3 gcdcllem3 MN¬M=0N=0supn|nMnN<supn|nMnN<Msupn|nMnN<NKKMKNKsupn|nMnN<
5 4 simp1d MN¬M=0N=0supn|nMnN<
6 1 5 eqeltrd MN¬M=0N=0MgcdN