Metamath Proof Explorer


Definition df-gcd

Description: Define the gcd operator. For example, ( -u 6 gcd 9 ) = 3 ( ex-gcd ). For an alternate definition, based on the definition in ApostolNT p. 15, see dfgcd2 . (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion df-gcd gcd=x,yifx=0y=00supn|nxny<

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgcd classgcd
1 vx setvarx
2 cz class
3 vy setvary
4 1 cv setvarx
5 cc0 class0
6 4 5 wceq wffx=0
7 3 cv setvary
8 7 5 wceq wffy=0
9 6 8 wa wffx=0y=0
10 vn setvarn
11 10 cv setvarn
12 cdvds class
13 11 4 12 wbr wffnx
14 11 7 12 wbr wffny
15 13 14 wa wffnxny
16 15 10 2 crab classn|nxny
17 cr class
18 clt class<
19 16 17 18 csup classsupn|nxny<
20 9 5 19 cif classifx=0y=00supn|nxny<
21 1 3 2 2 20 cmpo classx,yifx=0y=00supn|nxny<
22 0 21 wceq wffgcd=x,yifx=0y=00supn|nxny<