Metamath Proof Explorer


Theorem gcdval

Description: The value of the gcd operator. ( M gcd N ) is the greatest common divisor of M and N . If M and N are both 0 , the result is defined conventionally as 0 . (Contributed by Paul Chapman, 21-Mar-2011) (Revised by Mario Carneiro, 10-Nov-2013)

Ref Expression
Assertion gcdval M N M gcd N = if M = 0 N = 0 0 sup n | n M n N <

Proof

Step Hyp Ref Expression
1 eqeq1 x = M x = 0 M = 0
2 1 anbi1d x = M x = 0 y = 0 M = 0 y = 0
3 breq2 x = M n x n M
4 3 anbi1d x = M n x n y n M n y
5 4 rabbidv x = M n | n x n y = n | n M n y
6 5 supeq1d x = M sup n | n x n y < = sup n | n M n y <
7 2 6 ifbieq2d x = M if x = 0 y = 0 0 sup n | n x n y < = if M = 0 y = 0 0 sup n | n M n y <
8 eqeq1 y = N y = 0 N = 0
9 8 anbi2d y = N M = 0 y = 0 M = 0 N = 0
10 breq2 y = N n y n N
11 10 anbi2d y = N n M n y n M n N
12 11 rabbidv y = N n | n M n y = n | n M n N
13 12 supeq1d y = N sup n | n M n y < = sup n | n M n N <
14 9 13 ifbieq2d y = N if M = 0 y = 0 0 sup n | n M n y < = if M = 0 N = 0 0 sup n | n M n N <
15 df-gcd gcd = x , y if x = 0 y = 0 0 sup n | n x n y <
16 c0ex 0 V
17 ltso < Or
18 17 supex sup n | n M n N < V
19 16 18 ifex if M = 0 N = 0 0 sup n | n M n N < V
20 7 14 15 19 ovmpo M N M gcd N = if M = 0 N = 0 0 sup n | n M n N <