| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cgcd |
⊢ gcd |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
cz |
⊢ ℤ |
| 3 |
|
vy |
⊢ 𝑦 |
| 4 |
1
|
cv |
⊢ 𝑥 |
| 5 |
|
cc0 |
⊢ 0 |
| 6 |
4 5
|
wceq |
⊢ 𝑥 = 0 |
| 7 |
3
|
cv |
⊢ 𝑦 |
| 8 |
7 5
|
wceq |
⊢ 𝑦 = 0 |
| 9 |
6 8
|
wa |
⊢ ( 𝑥 = 0 ∧ 𝑦 = 0 ) |
| 10 |
|
vn |
⊢ 𝑛 |
| 11 |
10
|
cv |
⊢ 𝑛 |
| 12 |
|
cdvds |
⊢ ∥ |
| 13 |
11 4 12
|
wbr |
⊢ 𝑛 ∥ 𝑥 |
| 14 |
11 7 12
|
wbr |
⊢ 𝑛 ∥ 𝑦 |
| 15 |
13 14
|
wa |
⊢ ( 𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦 ) |
| 16 |
15 10 2
|
crab |
⊢ { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦 ) } |
| 17 |
|
cr |
⊢ ℝ |
| 18 |
|
clt |
⊢ < |
| 19 |
16 17 18
|
csup |
⊢ sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦 ) } , ℝ , < ) |
| 20 |
9 5 19
|
cif |
⊢ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦 ) } , ℝ , < ) ) |
| 21 |
1 3 2 2 20
|
cmpo |
⊢ ( 𝑥 ∈ ℤ , 𝑦 ∈ ℤ ↦ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦 ) } , ℝ , < ) ) ) |
| 22 |
0 21
|
wceq |
⊢ gcd = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℤ ↦ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦 ) } , ℝ , < ) ) ) |