| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gcdcl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  gcd  𝑁 )  ∈  ℕ0 ) | 
						
							| 2 | 1 | nn0ge0d | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  0  ≤  ( 𝑀  gcd  𝑁 ) ) | 
						
							| 3 |  | gcddvds | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑀  gcd  𝑁 )  ∥  𝑀  ∧  ( 𝑀  gcd  𝑁 )  ∥  𝑁 ) ) | 
						
							| 4 |  | 3anass | ⊢ ( ( 𝑒  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ↔  ( 𝑒  ∈  ℤ  ∧  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) ) ) | 
						
							| 5 | 4 | biancomi | ⊢ ( ( 𝑒  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ↔  ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑒  ∈  ℤ ) ) | 
						
							| 6 |  | dvdsgcd | ⊢ ( ( 𝑒  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  ( 𝑀  gcd  𝑁 ) ) ) | 
						
							| 7 | 5 6 | sylbir | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑒  ∈  ℤ )  →  ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  ( 𝑀  gcd  𝑁 ) ) ) | 
						
							| 8 | 7 | ralrimiva | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  ( 𝑀  gcd  𝑁 ) ) ) | 
						
							| 9 | 2 3 8 | 3jca | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 0  ≤  ( 𝑀  gcd  𝑁 )  ∧  ( ( 𝑀  gcd  𝑁 )  ∥  𝑀  ∧  ( 𝑀  gcd  𝑁 )  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  ( 𝑀  gcd  𝑁 ) ) ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝐷  =  ( 𝑀  gcd  𝑁 ) )  →  ( 0  ≤  ( 𝑀  gcd  𝑁 )  ∧  ( ( 𝑀  gcd  𝑁 )  ∥  𝑀  ∧  ( 𝑀  gcd  𝑁 )  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  ( 𝑀  gcd  𝑁 ) ) ) ) | 
						
							| 11 |  | breq2 | ⊢ ( 𝐷  =  ( 𝑀  gcd  𝑁 )  →  ( 0  ≤  𝐷  ↔  0  ≤  ( 𝑀  gcd  𝑁 ) ) ) | 
						
							| 12 |  | breq1 | ⊢ ( 𝐷  =  ( 𝑀  gcd  𝑁 )  →  ( 𝐷  ∥  𝑀  ↔  ( 𝑀  gcd  𝑁 )  ∥  𝑀 ) ) | 
						
							| 13 |  | breq1 | ⊢ ( 𝐷  =  ( 𝑀  gcd  𝑁 )  →  ( 𝐷  ∥  𝑁  ↔  ( 𝑀  gcd  𝑁 )  ∥  𝑁 ) ) | 
						
							| 14 | 12 13 | anbi12d | ⊢ ( 𝐷  =  ( 𝑀  gcd  𝑁 )  →  ( ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ↔  ( ( 𝑀  gcd  𝑁 )  ∥  𝑀  ∧  ( 𝑀  gcd  𝑁 )  ∥  𝑁 ) ) ) | 
						
							| 15 |  | breq2 | ⊢ ( 𝐷  =  ( 𝑀  gcd  𝑁 )  →  ( 𝑒  ∥  𝐷  ↔  𝑒  ∥  ( 𝑀  gcd  𝑁 ) ) ) | 
						
							| 16 | 15 | imbi2d | ⊢ ( 𝐷  =  ( 𝑀  gcd  𝑁 )  →  ( ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 )  ↔  ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  ( 𝑀  gcd  𝑁 ) ) ) ) | 
						
							| 17 | 16 | ralbidv | ⊢ ( 𝐷  =  ( 𝑀  gcd  𝑁 )  →  ( ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 )  ↔  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  ( 𝑀  gcd  𝑁 ) ) ) ) | 
						
							| 18 | 11 14 17 | 3anbi123d | ⊢ ( 𝐷  =  ( 𝑀  gcd  𝑁 )  →  ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) )  ↔  ( 0  ≤  ( 𝑀  gcd  𝑁 )  ∧  ( ( 𝑀  gcd  𝑁 )  ∥  𝑀  ∧  ( 𝑀  gcd  𝑁 )  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  ( 𝑀  gcd  𝑁 ) ) ) ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝐷  =  ( 𝑀  gcd  𝑁 ) )  →  ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) )  ↔  ( 0  ≤  ( 𝑀  gcd  𝑁 )  ∧  ( ( 𝑀  gcd  𝑁 )  ∥  𝑀  ∧  ( 𝑀  gcd  𝑁 )  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  ( 𝑀  gcd  𝑁 ) ) ) ) ) | 
						
							| 20 | 10 19 | mpbird | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝐷  =  ( 𝑀  gcd  𝑁 ) )  →  ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) ) ) | 
						
							| 21 |  | gcdval | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  gcd  𝑁 )  =  if ( ( 𝑀  =  0  ∧  𝑁  =  0 ) ,  0 ,  sup ( { 𝑛  ∈  ℤ  ∣  ( 𝑛  ∥  𝑀  ∧  𝑛  ∥  𝑁 ) } ,  ℝ ,   <  ) ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) ) )  →  ( 𝑀  gcd  𝑁 )  =  if ( ( 𝑀  =  0  ∧  𝑁  =  0 ) ,  0 ,  sup ( { 𝑛  ∈  ℤ  ∣  ( 𝑛  ∥  𝑀  ∧  𝑛  ∥  𝑁 ) } ,  ℝ ,   <  ) ) ) | 
						
							| 23 |  | iftrue | ⊢ ( ( 𝑀  =  0  ∧  𝑁  =  0 )  →  if ( ( 𝑀  =  0  ∧  𝑁  =  0 ) ,  0 ,  sup ( { 𝑛  ∈  ℤ  ∣  ( 𝑛  ∥  𝑀  ∧  𝑛  ∥  𝑁 ) } ,  ℝ ,   <  ) )  =  0 ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ( 𝑀  =  0  ∧  𝑁  =  0 )  ∧  ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) ) ) )  →  if ( ( 𝑀  =  0  ∧  𝑁  =  0 ) ,  0 ,  sup ( { 𝑛  ∈  ℤ  ∣  ( 𝑛  ∥  𝑀  ∧  𝑛  ∥  𝑁 ) } ,  ℝ ,   <  ) )  =  0 ) | 
						
							| 25 |  | breq2 | ⊢ ( 𝑀  =  0  →  ( 𝐷  ∥  𝑀  ↔  𝐷  ∥  0 ) ) | 
						
							| 26 |  | breq2 | ⊢ ( 𝑁  =  0  →  ( 𝐷  ∥  𝑁  ↔  𝐷  ∥  0 ) ) | 
						
							| 27 | 25 26 | bi2anan9 | ⊢ ( ( 𝑀  =  0  ∧  𝑁  =  0 )  →  ( ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ↔  ( 𝐷  ∥  0  ∧  𝐷  ∥  0 ) ) ) | 
						
							| 28 |  | breq2 | ⊢ ( 𝑀  =  0  →  ( 𝑒  ∥  𝑀  ↔  𝑒  ∥  0 ) ) | 
						
							| 29 |  | breq2 | ⊢ ( 𝑁  =  0  →  ( 𝑒  ∥  𝑁  ↔  𝑒  ∥  0 ) ) | 
						
							| 30 | 28 29 | bi2anan9 | ⊢ ( ( 𝑀  =  0  ∧  𝑁  =  0 )  →  ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  ↔  ( 𝑒  ∥  0  ∧  𝑒  ∥  0 ) ) ) | 
						
							| 31 | 30 | imbi1d | ⊢ ( ( 𝑀  =  0  ∧  𝑁  =  0 )  →  ( ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 )  ↔  ( ( 𝑒  ∥  0  ∧  𝑒  ∥  0 )  →  𝑒  ∥  𝐷 ) ) ) | 
						
							| 32 | 31 | ralbidv | ⊢ ( ( 𝑀  =  0  ∧  𝑁  =  0 )  →  ( ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 )  ↔  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  0  ∧  𝑒  ∥  0 )  →  𝑒  ∥  𝐷 ) ) ) | 
						
							| 33 | 27 32 | 3anbi23d | ⊢ ( ( 𝑀  =  0  ∧  𝑁  =  0 )  →  ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) )  ↔  ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  0  ∧  𝐷  ∥  0 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  0  ∧  𝑒  ∥  0 )  →  𝑒  ∥  𝐷 ) ) ) ) | 
						
							| 34 |  | dvdszrcl | ⊢ ( 𝐷  ∥  0  →  ( 𝐷  ∈  ℤ  ∧  0  ∈  ℤ ) ) | 
						
							| 35 |  | dvds0 | ⊢ ( 𝑒  ∈  ℤ  →  𝑒  ∥  0 ) | 
						
							| 36 | 35 35 | jca | ⊢ ( 𝑒  ∈  ℤ  →  ( 𝑒  ∥  0  ∧  𝑒  ∥  0 ) ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( ( 𝐷  ∈  ℤ  ∧  0  ≤  𝐷 )  ∧  𝑒  ∈  ℤ )  →  ( 𝑒  ∥  0  ∧  𝑒  ∥  0 ) ) | 
						
							| 38 |  | pm5.5 | ⊢ ( ( 𝑒  ∥  0  ∧  𝑒  ∥  0 )  →  ( ( ( 𝑒  ∥  0  ∧  𝑒  ∥  0 )  →  𝑒  ∥  𝐷 )  ↔  𝑒  ∥  𝐷 ) ) | 
						
							| 39 | 37 38 | syl | ⊢ ( ( ( 𝐷  ∈  ℤ  ∧  0  ≤  𝐷 )  ∧  𝑒  ∈  ℤ )  →  ( ( ( 𝑒  ∥  0  ∧  𝑒  ∥  0 )  →  𝑒  ∥  𝐷 )  ↔  𝑒  ∥  𝐷 ) ) | 
						
							| 40 | 39 | ralbidva | ⊢ ( ( 𝐷  ∈  ℤ  ∧  0  ≤  𝐷 )  →  ( ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  0  ∧  𝑒  ∥  0 )  →  𝑒  ∥  𝐷 )  ↔  ∀ 𝑒  ∈  ℤ 𝑒  ∥  𝐷 ) ) | 
						
							| 41 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 42 |  | breq1 | ⊢ ( 𝑒  =  0  →  ( 𝑒  ∥  𝐷  ↔  0  ∥  𝐷 ) ) | 
						
							| 43 | 42 | rspcv | ⊢ ( 0  ∈  ℤ  →  ( ∀ 𝑒  ∈  ℤ 𝑒  ∥  𝐷  →  0  ∥  𝐷 ) ) | 
						
							| 44 | 41 43 | ax-mp | ⊢ ( ∀ 𝑒  ∈  ℤ 𝑒  ∥  𝐷  →  0  ∥  𝐷 ) | 
						
							| 45 |  | 0dvds | ⊢ ( 𝐷  ∈  ℤ  →  ( 0  ∥  𝐷  ↔  𝐷  =  0 ) ) | 
						
							| 46 | 45 | biimpd | ⊢ ( 𝐷  ∈  ℤ  →  ( 0  ∥  𝐷  →  𝐷  =  0 ) ) | 
						
							| 47 |  | eqcom | ⊢ ( 0  =  𝐷  ↔  𝐷  =  0 ) | 
						
							| 48 | 46 47 | imbitrrdi | ⊢ ( 𝐷  ∈  ℤ  →  ( 0  ∥  𝐷  →  0  =  𝐷 ) ) | 
						
							| 49 | 44 48 | syl5 | ⊢ ( 𝐷  ∈  ℤ  →  ( ∀ 𝑒  ∈  ℤ 𝑒  ∥  𝐷  →  0  =  𝐷 ) ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( 𝐷  ∈  ℤ  ∧  0  ≤  𝐷 )  →  ( ∀ 𝑒  ∈  ℤ 𝑒  ∥  𝐷  →  0  =  𝐷 ) ) | 
						
							| 51 | 40 50 | sylbid | ⊢ ( ( 𝐷  ∈  ℤ  ∧  0  ≤  𝐷 )  →  ( ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  0  ∧  𝑒  ∥  0 )  →  𝑒  ∥  𝐷 )  →  0  =  𝐷 ) ) | 
						
							| 52 | 51 | ex | ⊢ ( 𝐷  ∈  ℤ  →  ( 0  ≤  𝐷  →  ( ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  0  ∧  𝑒  ∥  0 )  →  𝑒  ∥  𝐷 )  →  0  =  𝐷 ) ) ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝐷  ∈  ℤ  ∧  0  ∈  ℤ )  →  ( 0  ≤  𝐷  →  ( ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  0  ∧  𝑒  ∥  0 )  →  𝑒  ∥  𝐷 )  →  0  =  𝐷 ) ) ) | 
						
							| 54 | 34 53 | syl | ⊢ ( 𝐷  ∥  0  →  ( 0  ≤  𝐷  →  ( ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  0  ∧  𝑒  ∥  0 )  →  𝑒  ∥  𝐷 )  →  0  =  𝐷 ) ) ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( 𝐷  ∥  0  ∧  𝐷  ∥  0 )  →  ( 0  ≤  𝐷  →  ( ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  0  ∧  𝑒  ∥  0 )  →  𝑒  ∥  𝐷 )  →  0  =  𝐷 ) ) ) | 
						
							| 56 | 55 | 3imp21 | ⊢ ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  0  ∧  𝐷  ∥  0 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  0  ∧  𝑒  ∥  0 )  →  𝑒  ∥  𝐷 ) )  →  0  =  𝐷 ) | 
						
							| 57 | 33 56 | biimtrdi | ⊢ ( ( 𝑀  =  0  ∧  𝑁  =  0 )  →  ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) )  →  0  =  𝐷 ) ) | 
						
							| 58 | 57 | adantld | ⊢ ( ( 𝑀  =  0  ∧  𝑁  =  0 )  →  ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) ) )  →  0  =  𝐷 ) ) | 
						
							| 59 | 58 | imp | ⊢ ( ( ( 𝑀  =  0  ∧  𝑁  =  0 )  ∧  ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) ) ) )  →  0  =  𝐷 ) | 
						
							| 60 | 24 59 | eqtrd | ⊢ ( ( ( 𝑀  =  0  ∧  𝑁  =  0 )  ∧  ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) ) ) )  →  if ( ( 𝑀  =  0  ∧  𝑁  =  0 ) ,  0 ,  sup ( { 𝑛  ∈  ℤ  ∣  ( 𝑛  ∥  𝑀  ∧  𝑛  ∥  𝑁 ) } ,  ℝ ,   <  ) )  =  𝐷 ) | 
						
							| 61 |  | iffalse | ⊢ ( ¬  ( 𝑀  =  0  ∧  𝑁  =  0 )  →  if ( ( 𝑀  =  0  ∧  𝑁  =  0 ) ,  0 ,  sup ( { 𝑛  ∈  ℤ  ∣  ( 𝑛  ∥  𝑀  ∧  𝑛  ∥  𝑁 ) } ,  ℝ ,   <  ) )  =  sup ( { 𝑛  ∈  ℤ  ∣  ( 𝑛  ∥  𝑀  ∧  𝑛  ∥  𝑁 ) } ,  ℝ ,   <  ) ) | 
						
							| 62 | 61 | adantr | ⊢ ( ( ¬  ( 𝑀  =  0  ∧  𝑁  =  0 )  ∧  ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) ) ) )  →  if ( ( 𝑀  =  0  ∧  𝑁  =  0 ) ,  0 ,  sup ( { 𝑛  ∈  ℤ  ∣  ( 𝑛  ∥  𝑀  ∧  𝑛  ∥  𝑁 ) } ,  ℝ ,   <  ) )  =  sup ( { 𝑛  ∈  ℤ  ∣  ( 𝑛  ∥  𝑀  ∧  𝑛  ∥  𝑁 ) } ,  ℝ ,   <  ) ) | 
						
							| 63 |  | ltso | ⊢  <   Or  ℝ | 
						
							| 64 | 63 | a1i | ⊢ ( ( ¬  ( 𝑀  =  0  ∧  𝑁  =  0 )  ∧  ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) ) ) )  →   <   Or  ℝ ) | 
						
							| 65 |  | dvdszrcl | ⊢ ( 𝐷  ∥  𝑀  →  ( 𝐷  ∈  ℤ  ∧  𝑀  ∈  ℤ ) ) | 
						
							| 66 | 65 | simpld | ⊢ ( 𝐷  ∥  𝑀  →  𝐷  ∈  ℤ ) | 
						
							| 67 | 66 | zred | ⊢ ( 𝐷  ∥  𝑀  →  𝐷  ∈  ℝ ) | 
						
							| 68 | 67 | adantr | ⊢ ( ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  →  𝐷  ∈  ℝ ) | 
						
							| 69 | 68 | 3ad2ant2 | ⊢ ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) )  →  𝐷  ∈  ℝ ) | 
						
							| 70 | 69 | ad2antll | ⊢ ( ( ¬  ( 𝑀  =  0  ∧  𝑁  =  0 )  ∧  ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) ) ) )  →  𝐷  ∈  ℝ ) | 
						
							| 71 |  | breq1 | ⊢ ( 𝑛  =  𝑦  →  ( 𝑛  ∥  𝑀  ↔  𝑦  ∥  𝑀 ) ) | 
						
							| 72 |  | breq1 | ⊢ ( 𝑛  =  𝑦  →  ( 𝑛  ∥  𝑁  ↔  𝑦  ∥  𝑁 ) ) | 
						
							| 73 | 71 72 | anbi12d | ⊢ ( 𝑛  =  𝑦  →  ( ( 𝑛  ∥  𝑀  ∧  𝑛  ∥  𝑁 )  ↔  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) ) ) | 
						
							| 74 | 73 | elrab | ⊢ ( 𝑦  ∈  { 𝑛  ∈  ℤ  ∣  ( 𝑛  ∥  𝑀  ∧  𝑛  ∥  𝑁 ) }  ↔  ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) ) ) | 
						
							| 75 |  | breq1 | ⊢ ( 𝑒  =  𝑦  →  ( 𝑒  ∥  𝑀  ↔  𝑦  ∥  𝑀 ) ) | 
						
							| 76 |  | breq1 | ⊢ ( 𝑒  =  𝑦  →  ( 𝑒  ∥  𝑁  ↔  𝑦  ∥  𝑁 ) ) | 
						
							| 77 | 75 76 | anbi12d | ⊢ ( 𝑒  =  𝑦  →  ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  ↔  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) ) ) | 
						
							| 78 |  | breq1 | ⊢ ( 𝑒  =  𝑦  →  ( 𝑒  ∥  𝐷  ↔  𝑦  ∥  𝐷 ) ) | 
						
							| 79 | 77 78 | imbi12d | ⊢ ( 𝑒  =  𝑦  →  ( ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 )  ↔  ( ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 )  →  𝑦  ∥  𝐷 ) ) ) | 
						
							| 80 | 79 | rspcv | ⊢ ( 𝑦  ∈  ℤ  →  ( ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 )  →  ( ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 )  →  𝑦  ∥  𝐷 ) ) ) | 
						
							| 81 | 80 | com23 | ⊢ ( 𝑦  ∈  ℤ  →  ( ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 )  →  ( ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 )  →  𝑦  ∥  𝐷 ) ) ) | 
						
							| 82 | 81 | imp | ⊢ ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  →  ( ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 )  →  𝑦  ∥  𝐷 ) ) | 
						
							| 83 | 82 | ad2antrr | ⊢ ( ( ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  ∧  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 )  →  𝑦  ∥  𝐷 ) ) | 
						
							| 84 |  | elnn0z | ⊢ ( 𝐷  ∈  ℕ0  ↔  ( 𝐷  ∈  ℤ  ∧  0  ≤  𝐷 ) ) | 
						
							| 85 | 84 | simplbi2 | ⊢ ( 𝐷  ∈  ℤ  →  ( 0  ≤  𝐷  →  𝐷  ∈  ℕ0 ) ) | 
						
							| 86 | 85 | adantr | ⊢ ( ( 𝐷  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 0  ≤  𝐷  →  𝐷  ∈  ℕ0 ) ) | 
						
							| 87 | 65 86 | syl | ⊢ ( 𝐷  ∥  𝑀  →  ( 0  ≤  𝐷  →  𝐷  ∈  ℕ0 ) ) | 
						
							| 88 | 87 | adantr | ⊢ ( ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  →  ( 0  ≤  𝐷  →  𝐷  ∈  ℕ0 ) ) | 
						
							| 89 | 88 | impcom | ⊢ ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) )  →  𝐷  ∈  ℕ0 ) | 
						
							| 90 |  | simp-4l | ⊢ ( ( ( ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  ∧  𝐷  ∈  ℕ0 )  ∧  ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) ) )  →  𝑦  ∈  ℤ ) | 
						
							| 91 |  | elnn0 | ⊢ ( 𝐷  ∈  ℕ0  ↔  ( 𝐷  ∈  ℕ  ∨  𝐷  =  0 ) ) | 
						
							| 92 |  | 2a1 | ⊢ ( 𝐷  ∈  ℕ  →  ( ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  →  ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) )  →  𝐷  ∈  ℕ ) ) ) | 
						
							| 93 |  | breq1 | ⊢ ( 𝐷  =  0  →  ( 𝐷  ∥  𝑀  ↔  0  ∥  𝑀 ) ) | 
						
							| 94 |  | breq1 | ⊢ ( 𝐷  =  0  →  ( 𝐷  ∥  𝑁  ↔  0  ∥  𝑁 ) ) | 
						
							| 95 | 93 94 | anbi12d | ⊢ ( 𝐷  =  0  →  ( ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ↔  ( 0  ∥  𝑀  ∧  0  ∥  𝑁 ) ) ) | 
						
							| 96 | 95 | anbi2d | ⊢ ( 𝐷  =  0  →  ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) )  ↔  ( 0  ≤  𝐷  ∧  ( 0  ∥  𝑀  ∧  0  ∥  𝑁 ) ) ) ) | 
						
							| 97 | 96 | adantr | ⊢ ( ( 𝐷  =  0  ∧  ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) ) )  →  ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) )  ↔  ( 0  ≤  𝐷  ∧  ( 0  ∥  𝑀  ∧  0  ∥  𝑁 ) ) ) ) | 
						
							| 98 |  | ianor | ⊢ ( ¬  ( 𝑀  =  0  ∧  𝑁  =  0 )  ↔  ( ¬  𝑀  =  0  ∨  ¬  𝑁  =  0 ) ) | 
						
							| 99 |  | dvdszrcl | ⊢ ( 0  ∥  𝑀  →  ( 0  ∈  ℤ  ∧  𝑀  ∈  ℤ ) ) | 
						
							| 100 |  | 0dvds | ⊢ ( 𝑀  ∈  ℤ  →  ( 0  ∥  𝑀  ↔  𝑀  =  0 ) ) | 
						
							| 101 |  | pm2.24 | ⊢ ( 𝑀  =  0  →  ( ¬  𝑀  =  0  →  𝐷  ∈  ℕ ) ) | 
						
							| 102 | 100 101 | biimtrdi | ⊢ ( 𝑀  ∈  ℤ  →  ( 0  ∥  𝑀  →  ( ¬  𝑀  =  0  →  𝐷  ∈  ℕ ) ) ) | 
						
							| 103 | 102 | adantl | ⊢ ( ( 0  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 0  ∥  𝑀  →  ( ¬  𝑀  =  0  →  𝐷  ∈  ℕ ) ) ) | 
						
							| 104 | 99 103 | mpcom | ⊢ ( 0  ∥  𝑀  →  ( ¬  𝑀  =  0  →  𝐷  ∈  ℕ ) ) | 
						
							| 105 | 104 | adantr | ⊢ ( ( 0  ∥  𝑀  ∧  0  ∥  𝑁 )  →  ( ¬  𝑀  =  0  →  𝐷  ∈  ℕ ) ) | 
						
							| 106 | 105 | com12 | ⊢ ( ¬  𝑀  =  0  →  ( ( 0  ∥  𝑀  ∧  0  ∥  𝑁 )  →  𝐷  ∈  ℕ ) ) | 
						
							| 107 |  | dvdszrcl | ⊢ ( 0  ∥  𝑁  →  ( 0  ∈  ℤ  ∧  𝑁  ∈  ℤ ) ) | 
						
							| 108 |  | 0dvds | ⊢ ( 𝑁  ∈  ℤ  →  ( 0  ∥  𝑁  ↔  𝑁  =  0 ) ) | 
						
							| 109 |  | pm2.24 | ⊢ ( 𝑁  =  0  →  ( ¬  𝑁  =  0  →  𝐷  ∈  ℕ ) ) | 
						
							| 110 | 108 109 | biimtrdi | ⊢ ( 𝑁  ∈  ℤ  →  ( 0  ∥  𝑁  →  ( ¬  𝑁  =  0  →  𝐷  ∈  ℕ ) ) ) | 
						
							| 111 | 110 | adantl | ⊢ ( ( 0  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 0  ∥  𝑁  →  ( ¬  𝑁  =  0  →  𝐷  ∈  ℕ ) ) ) | 
						
							| 112 | 107 111 | mpcom | ⊢ ( 0  ∥  𝑁  →  ( ¬  𝑁  =  0  →  𝐷  ∈  ℕ ) ) | 
						
							| 113 | 112 | adantl | ⊢ ( ( 0  ∥  𝑀  ∧  0  ∥  𝑁 )  →  ( ¬  𝑁  =  0  →  𝐷  ∈  ℕ ) ) | 
						
							| 114 | 113 | com12 | ⊢ ( ¬  𝑁  =  0  →  ( ( 0  ∥  𝑀  ∧  0  ∥  𝑁 )  →  𝐷  ∈  ℕ ) ) | 
						
							| 115 | 106 114 | jaoi | ⊢ ( ( ¬  𝑀  =  0  ∨  ¬  𝑁  =  0 )  →  ( ( 0  ∥  𝑀  ∧  0  ∥  𝑁 )  →  𝐷  ∈  ℕ ) ) | 
						
							| 116 | 98 115 | sylbi | ⊢ ( ¬  ( 𝑀  =  0  ∧  𝑁  =  0 )  →  ( ( 0  ∥  𝑀  ∧  0  ∥  𝑁 )  →  𝐷  ∈  ℕ ) ) | 
						
							| 117 | 116 | adantld | ⊢ ( ¬  ( 𝑀  =  0  ∧  𝑁  =  0 )  →  ( ( 0  ≤  𝐷  ∧  ( 0  ∥  𝑀  ∧  0  ∥  𝑁 ) )  →  𝐷  ∈  ℕ ) ) | 
						
							| 118 | 117 | ad2antll | ⊢ ( ( 𝐷  =  0  ∧  ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) ) )  →  ( ( 0  ≤  𝐷  ∧  ( 0  ∥  𝑀  ∧  0  ∥  𝑁 ) )  →  𝐷  ∈  ℕ ) ) | 
						
							| 119 | 97 118 | sylbid | ⊢ ( ( 𝐷  =  0  ∧  ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) ) )  →  ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) )  →  𝐷  ∈  ℕ ) ) | 
						
							| 120 | 119 | ex | ⊢ ( 𝐷  =  0  →  ( ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  →  ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) )  →  𝐷  ∈  ℕ ) ) ) | 
						
							| 121 | 92 120 | jaoi | ⊢ ( ( 𝐷  ∈  ℕ  ∨  𝐷  =  0 )  →  ( ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  →  ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) )  →  𝐷  ∈  ℕ ) ) ) | 
						
							| 122 | 91 121 | sylbi | ⊢ ( 𝐷  ∈  ℕ0  →  ( ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  →  ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) )  →  𝐷  ∈  ℕ ) ) ) | 
						
							| 123 | 122 | impcom | ⊢ ( ( ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  ∧  𝐷  ∈  ℕ0 )  →  ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) )  →  𝐷  ∈  ℕ ) ) | 
						
							| 124 | 123 | imp | ⊢ ( ( ( ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  ∧  𝐷  ∈  ℕ0 )  ∧  ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) ) )  →  𝐷  ∈  ℕ ) | 
						
							| 125 |  | dvdsle | ⊢ ( ( 𝑦  ∈  ℤ  ∧  𝐷  ∈  ℕ )  →  ( 𝑦  ∥  𝐷  →  𝑦  ≤  𝐷 ) ) | 
						
							| 126 | 90 124 125 | syl2anc | ⊢ ( ( ( ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  ∧  𝐷  ∈  ℕ0 )  ∧  ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) ) )  →  ( 𝑦  ∥  𝐷  →  𝑦  ≤  𝐷 ) ) | 
						
							| 127 | 126 | exp31 | ⊢ ( ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  →  ( 𝐷  ∈  ℕ0  →  ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) )  →  ( 𝑦  ∥  𝐷  →  𝑦  ≤  𝐷 ) ) ) ) | 
						
							| 128 | 127 | com14 | ⊢ ( 𝑦  ∥  𝐷  →  ( 𝐷  ∈  ℕ0  →  ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) )  →  ( ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  →  𝑦  ≤  𝐷 ) ) ) ) | 
						
							| 129 | 128 | imp | ⊢ ( ( 𝑦  ∥  𝐷  ∧  𝐷  ∈  ℕ0 )  →  ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) )  →  ( ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  →  𝑦  ≤  𝐷 ) ) ) | 
						
							| 130 | 129 | impcom | ⊢ ( ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) )  ∧  ( 𝑦  ∥  𝐷  ∧  𝐷  ∈  ℕ0 ) )  →  ( ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  →  𝑦  ≤  𝐷 ) ) | 
						
							| 131 | 130 | imp | ⊢ ( ( ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) )  ∧  ( 𝑦  ∥  𝐷  ∧  𝐷  ∈  ℕ0 ) )  ∧  ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) ) )  →  𝑦  ≤  𝐷 ) | 
						
							| 132 |  | zre | ⊢ ( 𝑦  ∈  ℤ  →  𝑦  ∈  ℝ ) | 
						
							| 133 | 132 | ad2antrr | ⊢ ( ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 134 | 68 | ad2antlr | ⊢ ( ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) )  ∧  ( 𝑦  ∥  𝐷  ∧  𝐷  ∈  ℕ0 ) )  →  𝐷  ∈  ℝ ) | 
						
							| 135 |  | lenlt | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝐷  ∈  ℝ )  →  ( 𝑦  ≤  𝐷  ↔  ¬  𝐷  <  𝑦 ) ) | 
						
							| 136 | 133 134 135 | syl2anr | ⊢ ( ( ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) )  ∧  ( 𝑦  ∥  𝐷  ∧  𝐷  ∈  ℕ0 ) )  ∧  ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) ) )  →  ( 𝑦  ≤  𝐷  ↔  ¬  𝐷  <  𝑦 ) ) | 
						
							| 137 | 131 136 | mpbid | ⊢ ( ( ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) )  ∧  ( 𝑦  ∥  𝐷  ∧  𝐷  ∈  ℕ0 ) )  ∧  ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) ) )  →  ¬  𝐷  <  𝑦 ) | 
						
							| 138 | 137 | exp31 | ⊢ ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) )  →  ( ( 𝑦  ∥  𝐷  ∧  𝐷  ∈  ℕ0 )  →  ( ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  →  ¬  𝐷  <  𝑦 ) ) ) | 
						
							| 139 | 89 138 | mpan2d | ⊢ ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) )  →  ( 𝑦  ∥  𝐷  →  ( ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  →  ¬  𝐷  <  𝑦 ) ) ) | 
						
							| 140 | 139 | com13 | ⊢ ( ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  →  ( 𝑦  ∥  𝐷  →  ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) )  →  ¬  𝐷  <  𝑦 ) ) ) | 
						
							| 141 | 140 | adantr | ⊢ ( ( ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  ∧  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( 𝑦  ∥  𝐷  →  ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) )  →  ¬  𝐷  <  𝑦 ) ) ) | 
						
							| 142 | 83 141 | syld | ⊢ ( ( ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  ∧  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 )  →  ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) )  →  ¬  𝐷  <  𝑦 ) ) ) | 
						
							| 143 | 142 | com13 | ⊢ ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) )  →  ( ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 )  →  ( ( ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  ∧  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ¬  𝐷  <  𝑦 ) ) ) | 
						
							| 144 | 143 | 3impia | ⊢ ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) )  →  ( ( ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  ∧  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ¬  𝐷  <  𝑦 ) ) | 
						
							| 145 | 144 | com12 | ⊢ ( ( ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  ∧  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) )  →  ¬  𝐷  <  𝑦 ) ) | 
						
							| 146 | 145 | expimpd | ⊢ ( ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  ∧  ¬  ( 𝑀  =  0  ∧  𝑁  =  0 ) )  →  ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) ) )  →  ¬  𝐷  <  𝑦 ) ) | 
						
							| 147 | 146 | expimpd | ⊢ ( ( 𝑦  ∈  ℤ  ∧  ( 𝑦  ∥  𝑀  ∧  𝑦  ∥  𝑁 ) )  →  ( ( ¬  ( 𝑀  =  0  ∧  𝑁  =  0 )  ∧  ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) ) ) )  →  ¬  𝐷  <  𝑦 ) ) | 
						
							| 148 | 74 147 | sylbi | ⊢ ( 𝑦  ∈  { 𝑛  ∈  ℤ  ∣  ( 𝑛  ∥  𝑀  ∧  𝑛  ∥  𝑁 ) }  →  ( ( ¬  ( 𝑀  =  0  ∧  𝑁  =  0 )  ∧  ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) ) ) )  →  ¬  𝐷  <  𝑦 ) ) | 
						
							| 149 | 148 | impcom | ⊢ ( ( ( ¬  ( 𝑀  =  0  ∧  𝑁  =  0 )  ∧  ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) ) ) )  ∧  𝑦  ∈  { 𝑛  ∈  ℤ  ∣  ( 𝑛  ∥  𝑀  ∧  𝑛  ∥  𝑁 ) } )  →  ¬  𝐷  <  𝑦 ) | 
						
							| 150 | 66 | adantr | ⊢ ( ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  →  𝐷  ∈  ℤ ) | 
						
							| 151 | 150 | ancri | ⊢ ( ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  →  ( 𝐷  ∈  ℤ  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) ) ) | 
						
							| 152 | 151 | 3ad2ant2 | ⊢ ( ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) )  →  ( 𝐷  ∈  ℤ  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) ) ) | 
						
							| 153 | 152 | ad2antll | ⊢ ( ( ¬  ( 𝑀  =  0  ∧  𝑁  =  0 )  ∧  ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) ) ) )  →  ( 𝐷  ∈  ℤ  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) ) ) | 
						
							| 154 | 153 | adantr | ⊢ ( ( ( ¬  ( 𝑀  =  0  ∧  𝑁  =  0 )  ∧  ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) ) ) )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑦  <  𝐷 ) )  →  ( 𝐷  ∈  ℤ  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) ) ) | 
						
							| 155 |  | breq1 | ⊢ ( 𝑛  =  𝐷  →  ( 𝑛  ∥  𝑀  ↔  𝐷  ∥  𝑀 ) ) | 
						
							| 156 |  | breq1 | ⊢ ( 𝑛  =  𝐷  →  ( 𝑛  ∥  𝑁  ↔  𝐷  ∥  𝑁 ) ) | 
						
							| 157 | 155 156 | anbi12d | ⊢ ( 𝑛  =  𝐷  →  ( ( 𝑛  ∥  𝑀  ∧  𝑛  ∥  𝑁 )  ↔  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) ) ) | 
						
							| 158 | 157 | elrab | ⊢ ( 𝐷  ∈  { 𝑛  ∈  ℤ  ∣  ( 𝑛  ∥  𝑀  ∧  𝑛  ∥  𝑁 ) }  ↔  ( 𝐷  ∈  ℤ  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 ) ) ) | 
						
							| 159 | 154 158 | sylibr | ⊢ ( ( ( ¬  ( 𝑀  =  0  ∧  𝑁  =  0 )  ∧  ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) ) ) )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑦  <  𝐷 ) )  →  𝐷  ∈  { 𝑛  ∈  ℤ  ∣  ( 𝑛  ∥  𝑀  ∧  𝑛  ∥  𝑁 ) } ) | 
						
							| 160 |  | breq2 | ⊢ ( 𝑧  =  𝐷  →  ( 𝑦  <  𝑧  ↔  𝑦  <  𝐷 ) ) | 
						
							| 161 | 160 | adantl | ⊢ ( ( ( ( ¬  ( 𝑀  =  0  ∧  𝑁  =  0 )  ∧  ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) ) ) )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑦  <  𝐷 ) )  ∧  𝑧  =  𝐷 )  →  ( 𝑦  <  𝑧  ↔  𝑦  <  𝐷 ) ) | 
						
							| 162 |  | simprr | ⊢ ( ( ( ¬  ( 𝑀  =  0  ∧  𝑁  =  0 )  ∧  ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) ) ) )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑦  <  𝐷 ) )  →  𝑦  <  𝐷 ) | 
						
							| 163 | 159 161 162 | rspcedvd | ⊢ ( ( ( ¬  ( 𝑀  =  0  ∧  𝑁  =  0 )  ∧  ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) ) ) )  ∧  ( 𝑦  ∈  ℝ  ∧  𝑦  <  𝐷 ) )  →  ∃ 𝑧  ∈  { 𝑛  ∈  ℤ  ∣  ( 𝑛  ∥  𝑀  ∧  𝑛  ∥  𝑁 ) } 𝑦  <  𝑧 ) | 
						
							| 164 | 64 70 149 163 | eqsupd | ⊢ ( ( ¬  ( 𝑀  =  0  ∧  𝑁  =  0 )  ∧  ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) ) ) )  →  sup ( { 𝑛  ∈  ℤ  ∣  ( 𝑛  ∥  𝑀  ∧  𝑛  ∥  𝑁 ) } ,  ℝ ,   <  )  =  𝐷 ) | 
						
							| 165 | 62 164 | eqtrd | ⊢ ( ( ¬  ( 𝑀  =  0  ∧  𝑁  =  0 )  ∧  ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) ) ) )  →  if ( ( 𝑀  =  0  ∧  𝑁  =  0 ) ,  0 ,  sup ( { 𝑛  ∈  ℤ  ∣  ( 𝑛  ∥  𝑀  ∧  𝑛  ∥  𝑁 ) } ,  ℝ ,   <  ) )  =  𝐷 ) | 
						
							| 166 | 60 165 | pm2.61ian | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) ) )  →  if ( ( 𝑀  =  0  ∧  𝑁  =  0 ) ,  0 ,  sup ( { 𝑛  ∈  ℤ  ∣  ( 𝑛  ∥  𝑀  ∧  𝑛  ∥  𝑁 ) } ,  ℝ ,   <  ) )  =  𝐷 ) | 
						
							| 167 | 22 166 | eqtr2d | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) ) )  →  𝐷  =  ( 𝑀  gcd  𝑁 ) ) | 
						
							| 168 | 20 167 | impbida | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝐷  =  ( 𝑀  gcd  𝑁 )  ↔  ( 0  ≤  𝐷  ∧  ( 𝐷  ∥  𝑀  ∧  𝐷  ∥  𝑁 )  ∧  ∀ 𝑒  ∈  ℤ ( ( 𝑒  ∥  𝑀  ∧  𝑒  ∥  𝑁 )  →  𝑒  ∥  𝐷 ) ) ) ) |