Description: Any integer divides 0. Theorem 1.1(g) in ApostolNT p. 14. (Contributed by Paul Chapman, 21-Mar-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | dvds0 | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∥ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
2 | 1 | mul02d | ⊢ ( 𝑁 ∈ ℤ → ( 0 · 𝑁 ) = 0 ) |
3 | 0z | ⊢ 0 ∈ ℤ | |
4 | dvds0lem | ⊢ ( ( ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ ) ∧ ( 0 · 𝑁 ) = 0 ) → 𝑁 ∥ 0 ) | |
5 | 4 | ex | ⊢ ( ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ ) → ( ( 0 · 𝑁 ) = 0 → 𝑁 ∥ 0 ) ) |
6 | 3 3 5 | mp3an13 | ⊢ ( 𝑁 ∈ ℤ → ( ( 0 · 𝑁 ) = 0 → 𝑁 ∥ 0 ) ) |
7 | 2 6 | mpd | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∥ 0 ) |