Metamath Proof Explorer


Theorem gcdn0val

Description: The value of the gcd operator when at least one operand is nonzero. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion gcdn0val MN¬M=0N=0MgcdN=supn|nMnN<

Proof

Step Hyp Ref Expression
1 gcdval MNMgcdN=ifM=0N=00supn|nMnN<
2 iffalse ¬M=0N=0ifM=0N=00supn|nMnN<=supn|nMnN<
3 1 2 sylan9eq MN¬M=0N=0MgcdN=supn|nMnN<