Metamath Proof Explorer


Theorem gcdcllem1

Description: Lemma for gcdn0cl , gcddvds and dvdslegcd . (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Hypothesis gcdcllem1.1 S=z|nAzn
Assertion gcdcllem1 AnAn0SxySyx

Proof

Step Hyp Ref Expression
1 gcdcllem1.1 S=z|nAzn
2 1z 1
3 ssel AnAn
4 1dvds n1n
5 3 4 syl6 AnA1n
6 5 ralrimiv AnA1n
7 breq1 z=1zn1n
8 7 ralbidv z=1nAznnA1n
9 8 1 elrab2 1S1nA1n
10 9 biimpri 1nA1n1S
11 2 6 10 sylancr A1S
12 11 ne0d AS
13 12 adantr AnAn0S
14 neeq1 n=wn0w0
15 14 cbvrexvw nAn0wAw0
16 breq1 z=yznyn
17 16 ralbidv z=ynAznnAyn
18 17 1 elrab2 ySynAyn
19 18 simprbi ySnAyn
20 18 simplbi ySy
21 ssel2 AnAn
22 dvdsleabs ynn0ynyn
23 22 3expia ynn0ynyn
24 21 23 sylan2 yAnAn0ynyn
25 24 anassrs yAnAn0ynyn
26 25 com23 yAnAynn0yn
27 26 ralrimiva yAnAynn0yn
28 27 ancoms AynAynn0yn
29 20 28 sylan2 AySnAynn0yn
30 r19.26 nAynynn0ynnAynnAynn0yn
31 pm3.35 ynynn0ynn0yn
32 31 ralimi nAynynn0ynnAn0yn
33 30 32 sylbir nAynnAynn0ynnAn0yn
34 19 29 33 syl2an2 AySnAn0yn
35 34 ralrimiva AySnAn0yn
36 fveq2 n=wn=w
37 36 breq2d n=wynyw
38 14 37 imbi12d n=wn0ynw0yw
39 38 cbvralvw nAn0ynwAw0yw
40 39 ralbii ySnAn0ynySwAw0yw
41 ralcom ySwAw0ywwAySw0yw
42 r19.21v ySw0yww0ySyw
43 42 ralbii wAySw0ywwAw0ySyw
44 40 41 43 3bitri ySnAn0ynwAw0ySyw
45 35 44 sylib AwAw0ySyw
46 ssel2 AwAw
47 nn0abscl ww0
48 46 47 syl AwAw0
49 48 nn0zd AwAw
50 breq2 x=wyxyw
51 50 ralbidv x=wySyxySyw
52 51 adantl AwAx=wySyxySyw
53 49 52 rspcedv AwAySywxySyx
54 53 imim2d AwAw0ySyww0xySyx
55 54 ralimdva AwAw0ySywwAw0xySyx
56 45 55 mpd AwAw0xySyx
57 r19.23v wAw0xySyxwAw0xySyx
58 56 57 sylib AwAw0xySyx
59 58 imp AwAw0xySyx
60 15 59 sylan2b AnAn0xySyx
61 13 60 jca AnAn0SxySyx