Description: Lemma for gcdn0cl , gcddvds and dvdslegcd . (Contributed by Paul Chapman, 21-Mar-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | gcdcllem1.1 | |
|
Assertion | gcdcllem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gcdcllem1.1 | |
|
2 | 1z | |
|
3 | ssel | |
|
4 | 1dvds | |
|
5 | 3 4 | syl6 | |
6 | 5 | ralrimiv | |
7 | breq1 | |
|
8 | 7 | ralbidv | |
9 | 8 1 | elrab2 | |
10 | 9 | biimpri | |
11 | 2 6 10 | sylancr | |
12 | 11 | ne0d | |
13 | 12 | adantr | |
14 | neeq1 | |
|
15 | 14 | cbvrexvw | |
16 | breq1 | |
|
17 | 16 | ralbidv | |
18 | 17 1 | elrab2 | |
19 | 18 | simprbi | |
20 | 18 | simplbi | |
21 | ssel2 | |
|
22 | dvdsleabs | |
|
23 | 22 | 3expia | |
24 | 21 23 | sylan2 | |
25 | 24 | anassrs | |
26 | 25 | com23 | |
27 | 26 | ralrimiva | |
28 | 27 | ancoms | |
29 | 20 28 | sylan2 | |
30 | r19.26 | |
|
31 | pm3.35 | |
|
32 | 31 | ralimi | |
33 | 30 32 | sylbir | |
34 | 19 29 33 | syl2an2 | |
35 | 34 | ralrimiva | |
36 | fveq2 | |
|
37 | 36 | breq2d | |
38 | 14 37 | imbi12d | |
39 | 38 | cbvralvw | |
40 | 39 | ralbii | |
41 | ralcom | |
|
42 | r19.21v | |
|
43 | 42 | ralbii | |
44 | 40 41 43 | 3bitri | |
45 | 35 44 | sylib | |
46 | ssel2 | |
|
47 | nn0abscl | |
|
48 | 46 47 | syl | |
49 | 48 | nn0zd | |
50 | breq2 | |
|
51 | 50 | ralbidv | |
52 | 51 | adantl | |
53 | 49 52 | rspcedv | |
54 | 53 | imim2d | |
55 | 54 | ralimdva | |
56 | 45 55 | mpd | |
57 | r19.23v | |
|
58 | 56 57 | sylib | |
59 | 58 | imp | |
60 | 15 59 | sylan2b | |
61 | 13 60 | jca | |