Metamath Proof Explorer


Theorem rspcedv

Description: Restricted existential specialization, using implicit substitution. (Contributed by FL, 17-Apr-2007) (Revised by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses rspcdv.1 φAB
rspcdv.2 φx=Aψχ
Assertion rspcedv φχxBψ

Proof

Step Hyp Ref Expression
1 rspcdv.1 φAB
2 rspcdv.2 φx=Aψχ
3 2 biimprd φx=Aχψ
4 1 3 rspcimedv φχxBψ