Metamath Proof Explorer
		
		
		
		Description:  Restricted existential specialization, using implicit substitution in
       both directions.  (Contributed by AV, 8-Jan-2022)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						rspcdv.1 | 
						   | 
					
					
						 | 
						 | 
						rspcdv.2 | 
						   | 
					
					
						 | 
						 | 
						rspcebdv.1 | 
						   | 
					
				
					 | 
					Assertion | 
					rspcebdv | 
					   | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rspcdv.1 | 
							   | 
						
						
							| 2 | 
							
								
							 | 
							rspcdv.2 | 
							   | 
						
						
							| 3 | 
							
								
							 | 
							rspcebdv.1 | 
							   | 
						
						
							| 4 | 
							
								3 2
							 | 
							syldan | 
							   | 
						
						
							| 5 | 
							
								4
							 | 
							biimpd | 
							   | 
						
						
							| 6 | 
							
								5
							 | 
							expcom | 
							   | 
						
						
							| 7 | 
							
								6
							 | 
							pm2.43b | 
							   | 
						
						
							| 8 | 
							
								7
							 | 
							rexlimdvw | 
							   | 
						
						
							| 9 | 
							
								1 2
							 | 
							rspcedv | 
							   | 
						
						
							| 10 | 
							
								8 9
							 | 
							impbid | 
							   |