Description: Restricted existential specialization, using implicit substitution in both directions. (Contributed by AV, 8-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspcdv.1 | |- ( ph -> A e. B ) | |
| rspcdv.2 | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) | ||
| rspcebdv.1 | |- ( ( ph /\ ps ) -> x = A ) | ||
| Assertion | rspcebdv | |- ( ph -> ( E. x e. B ps <-> ch ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rspcdv.1 | |- ( ph -> A e. B ) | |
| 2 | rspcdv.2 | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) | |
| 3 | rspcebdv.1 | |- ( ( ph /\ ps ) -> x = A ) | |
| 4 | 3 2 | syldan | |- ( ( ph /\ ps ) -> ( ps <-> ch ) ) | 
| 5 | 4 | biimpd | |- ( ( ph /\ ps ) -> ( ps -> ch ) ) | 
| 6 | 5 | expcom | |- ( ps -> ( ph -> ( ps -> ch ) ) ) | 
| 7 | 6 | pm2.43b | |- ( ph -> ( ps -> ch ) ) | 
| 8 | 7 | rexlimdvw | |- ( ph -> ( E. x e. B ps -> ch ) ) | 
| 9 | 1 2 | rspcedv | |- ( ph -> ( ch -> E. x e. B ps ) ) | 
| 10 | 8 9 | impbid | |- ( ph -> ( E. x e. B ps <-> ch ) ) |