Metamath Proof Explorer


Theorem grpridd

Description: The identity element of a group is a right identity. Deduction associated with grprid . (Contributed by SN, 29-Jan-2025)

Ref Expression
Hypotheses grpbn0.b B=BaseG
grplid.p +˙=+G
grplid.o 0˙=0G
grplidd.g φGGrp
grplidd.1 φXB
Assertion grpridd φX+˙0˙=X

Proof

Step Hyp Ref Expression
1 grpbn0.b B=BaseG
2 grplid.p +˙=+G
3 grplid.o 0˙=0G
4 grplidd.g φGGrp
5 grplidd.1 φXB
6 1 2 3 grprid GGrpXBX+˙0˙=X
7 4 5 6 syl2anc φX+˙0˙=X