Metamath Proof Explorer


Theorem har2o

Description: The least cardinal greater than 2 is 3. (Contributed by RP, 5-Nov-2023)

Ref Expression
Assertion har2o har 2 𝑜 = 3 𝑜

Proof

Step Hyp Ref Expression
1 2onn 2 𝑜 ω
2 harsucnn 2 𝑜 ω har 2 𝑜 = suc 2 𝑜
3 1 2 ax-mp har 2 𝑜 = suc 2 𝑜
4 df-3o 3 𝑜 = suc 2 𝑜
5 3 4 eqtr4i har 2 𝑜 = 3 𝑜