Metamath Proof Explorer


Theorem en2pr

Description: A class is equinumerous to ordinal two iff it is a pair of distinct sets. (Contributed by RP, 11-Oct-2023)

Ref Expression
Assertion en2pr A2𝑜xyA=xyxy

Proof

Step Hyp Ref Expression
1 en2 A2𝑜xyA=xy
2 1 pm4.71ri A2𝑜xyA=xyA2𝑜
3 19.41vv xyA=xyA2𝑜xyA=xyA2𝑜
4 breq1 A=xyA2𝑜xy2𝑜
5 pr2ne xVyVxy2𝑜xy
6 5 el2v xy2𝑜xy
7 4 6 bitrdi A=xyA2𝑜xy
8 7 pm5.32i A=xyA2𝑜A=xyxy
9 8 2exbii xyA=xyA2𝑜xyA=xyxy
10 2 3 9 3bitr2i A2𝑜xyA=xyxy