Metamath Proof Explorer


Theorem en2pr

Description: A class is equinumerous to ordinal two iff it is a pair of distinct sets. (Contributed by RP, 11-Oct-2023)

Ref Expression
Assertion en2pr A 2 𝑜 x y A = x y x y

Proof

Step Hyp Ref Expression
1 en2 A 2 𝑜 x y A = x y
2 1 pm4.71ri A 2 𝑜 x y A = x y A 2 𝑜
3 19.41vv x y A = x y A 2 𝑜 x y A = x y A 2 𝑜
4 breq1 A = x y A 2 𝑜 x y 2 𝑜
5 pr2ne x V y V x y 2 𝑜 x y
6 5 el2v x y 2 𝑜 x y
7 4 6 bitrdi A = x y A 2 𝑜 x y
8 7 pm5.32i A = x y A 2 𝑜 A = x y x y
9 8 2exbii x y A = x y A 2 𝑜 x y A = x y x y
10 2 3 9 3bitr2i A 2 𝑜 x y A = x y x y