Metamath Proof Explorer


Theorem pr2ne

Description: If an unordered pair has two elements, then they are different. (Contributed by FL, 14-Feb-2010) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 30-Dec-2024)

Ref Expression
Assertion pr2ne ACBDAB2𝑜AB

Proof

Step Hyp Ref Expression
1 snnen2o ¬A2𝑜
2 dfsn2 A=AA
3 preq2 A=BAA=AB
4 2 3 eqtr2id A=BAB=A
5 4 breq1d A=BAB2𝑜A2𝑜
6 1 5 mtbiri A=B¬AB2𝑜
7 6 necon2ai AB2𝑜AB
8 enpr2 ACBDABAB2𝑜
9 8 3expia ACBDABAB2𝑜
10 7 9 impbid2 ACBDAB2𝑜AB