Description: A singleton { A } is never equinumerous with the ordinal number 2. This holds for proper singletons ( A e.V ) as well as for singletons being the empty set ( A e/ V ). (Contributed by AV, 6-Aug-2019) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 1-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | snnen2o | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2o3 | |
|
2 | 0ex | |
|
3 | 1oex | |
|
4 | 1n0 | |
|
5 | 4 | necomi | |
6 | prnesn | |
|
7 | 2 3 5 6 | mp3an | |
8 | 1 7 | eqnetri | |
9 | 8 | neii | |
10 | 9 | nex | |
11 | 2on0 | |
|
12 | f1cdmsn | |
|
13 | 11 12 | mpan2 | |
14 | 10 13 | mto | |
15 | f1ocnv | |
|
16 | f1of1 | |
|
17 | 15 16 | syl | |
18 | 14 17 | mto | |
19 | 18 | nex | |
20 | snex | |
|
21 | 2oex | |
|
22 | breng | |
|
23 | 20 21 22 | mp2an | |
24 | 19 23 | mtbir | |