Metamath Proof Explorer


Theorem snnen2o

Description: A singleton { A } is never equinumerous with the ordinal number 2. This holds for proper singletons ( A e.V ) as well as for singletons being the empty set ( A e/ V ). (Contributed by AV, 6-Aug-2019) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 1-Dec-2024)

Ref Expression
Assertion snnen2o ¬A2𝑜

Proof

Step Hyp Ref Expression
1 df2o3 2𝑜=1𝑜
2 0ex V
3 1oex 1𝑜V
4 1n0 1𝑜
5 4 necomi 1𝑜
6 prnesn V1𝑜V1𝑜1𝑜x
7 2 3 5 6 mp3an 1𝑜x
8 1 7 eqnetri 2𝑜x
9 8 neii ¬2𝑜=x
10 9 nex ¬x2𝑜=x
11 2on0 2𝑜
12 f1cdmsn f-1:2𝑜1-1A2𝑜x2𝑜=x
13 11 12 mpan2 f-1:2𝑜1-1Ax2𝑜=x
14 10 13 mto ¬f-1:2𝑜1-1A
15 f1ocnv f:A1-1 onto2𝑜f-1:2𝑜1-1 ontoA
16 f1of1 f-1:2𝑜1-1 ontoAf-1:2𝑜1-1A
17 15 16 syl f:A1-1 onto2𝑜f-1:2𝑜1-1A
18 14 17 mto ¬f:A1-1 onto2𝑜
19 18 nex ¬ff:A1-1 onto2𝑜
20 snex AV
21 2oex 2𝑜V
22 breng AV2𝑜VA2𝑜ff:A1-1 onto2𝑜
23 20 21 22 mp2an A2𝑜ff:A1-1 onto2𝑜
24 19 23 mtbir ¬A2𝑜