Metamath Proof Explorer


Theorem snnen2o

Description: A singleton { A } is never equinumerous with the ordinal number 2. This holds for proper singletons ( A e.V ) as well as for singletons being the empty set ( A e/ V ). (Contributed by AV, 6-Aug-2019)

Ref Expression
Assertion snnen2o ¬ A 2 𝑜

Proof

Step Hyp Ref Expression
1 1onn 1 𝑜 ω
2 php5 1 𝑜 ω ¬ 1 𝑜 suc 1 𝑜
3 1 2 ax-mp ¬ 1 𝑜 suc 1 𝑜
4 ensn1g A V A 1 𝑜
5 df-2o 2 𝑜 = suc 1 𝑜
6 5 eqcomi suc 1 𝑜 = 2 𝑜
7 6 breq2i 1 𝑜 suc 1 𝑜 1 𝑜 2 𝑜
8 ensymb A 1 𝑜 1 𝑜 A
9 entr 1 𝑜 A A 2 𝑜 1 𝑜 2 𝑜
10 9 ex 1 𝑜 A A 2 𝑜 1 𝑜 2 𝑜
11 8 10 sylbi A 1 𝑜 A 2 𝑜 1 𝑜 2 𝑜
12 11 con3rr3 ¬ 1 𝑜 2 𝑜 A 1 𝑜 ¬ A 2 𝑜
13 7 12 sylnbi ¬ 1 𝑜 suc 1 𝑜 A 1 𝑜 ¬ A 2 𝑜
14 3 4 13 mpsyl A V ¬ A 2 𝑜
15 2on0 2 𝑜
16 ensymb 2 𝑜 2 𝑜
17 en0 2 𝑜 2 𝑜 =
18 16 17 bitri 2 𝑜 2 𝑜 =
19 15 18 nemtbir ¬ 2 𝑜
20 snprc ¬ A V A =
21 20 biimpi ¬ A V A =
22 21 breq1d ¬ A V A 2 𝑜 2 𝑜
23 19 22 mtbiri ¬ A V ¬ A 2 𝑜
24 14 23 pm2.61i ¬ A 2 𝑜