Metamath Proof Explorer


Theorem f1cdmsn

Description: If a one-to-one function with a nonempty domain has a singleton as its codomain, its domain must also be a singleton. (Contributed by BTernaryTau, 1-Dec-2024)

Ref Expression
Assertion f1cdmsn F:A1-1BAxA=x

Proof

Step Hyp Ref Expression
1 f1f F:A1-1BF:AB
2 fvconst F:AByAFy=B
3 2 3adant3 F:AByAzAFy=B
4 fvconst F:ABzAFz=B
5 4 3adant2 F:AByAzAFz=B
6 3 5 eqtr4d F:AByAzAFy=Fz
7 1 6 syl3an1 F:A1-1ByAzAFy=Fz
8 f1veqaeq F:A1-1ByAzAFy=Fzy=z
9 8 3impb F:A1-1ByAzAFy=Fzy=z
10 7 9 mpd F:A1-1ByAzAy=z
11 10 3expia F:A1-1ByAzAy=z
12 11 ralrimiv F:A1-1ByAzAy=z
13 12 reximdva0 F:A1-1BAyAzAy=z
14 issn yAzAy=zxA=x
15 13 14 syl F:A1-1BAxA=x