Metamath Proof Explorer


Theorem enpr2

Description: An unordered pair with distinct elements is equinumerous to ordinal two. This is a closed-form version of enpr2d . (Contributed by FL, 17-Aug-2008) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 30-Dec-2024)

Ref Expression
Assertion enpr2 ACBDABAB2𝑜

Proof

Step Hyp Ref Expression
1 df-ne AB¬A=B
2 simp1 ACBD¬A=BAC
3 simp2 ACBD¬A=BBD
4 simp3 ACBD¬A=B¬A=B
5 2 3 4 enpr2d ACBD¬A=BAB2𝑜
6 1 5 syl3an3b ACBDABAB2𝑜