Metamath Proof Explorer


Theorem enpr2

Description: An unordered pair with distinct elements is equinumerous to ordinal two. This is a closed-form version of enpr2d . (Contributed by FL, 17-Aug-2008) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 30-Dec-2024)

Ref Expression
Assertion enpr2
|- ( ( A e. C /\ B e. D /\ A =/= B ) -> { A , B } ~~ 2o )

Proof

Step Hyp Ref Expression
1 df-ne
 |-  ( A =/= B <-> -. A = B )
2 simp1
 |-  ( ( A e. C /\ B e. D /\ -. A = B ) -> A e. C )
3 simp2
 |-  ( ( A e. C /\ B e. D /\ -. A = B ) -> B e. D )
4 simp3
 |-  ( ( A e. C /\ B e. D /\ -. A = B ) -> -. A = B )
5 2 3 4 enpr2d
 |-  ( ( A e. C /\ B e. D /\ -. A = B ) -> { A , B } ~~ 2o )
6 1 5 syl3an3b
 |-  ( ( A e. C /\ B e. D /\ A =/= B ) -> { A , B } ~~ 2o )