| Step | Hyp | Ref | Expression | 
						
							| 1 |  | disjsn2 |  |-  ( A =/= B -> ( { A } i^i { B } ) = (/) ) | 
						
							| 2 |  | ensn1g |  |-  ( A e. C -> { A } ~~ 1o ) | 
						
							| 3 |  | ensn1g |  |-  ( B e. D -> { B } ~~ 1o ) | 
						
							| 4 |  | pm54.43 |  |-  ( ( { A } ~~ 1o /\ { B } ~~ 1o ) -> ( ( { A } i^i { B } ) = (/) <-> ( { A } u. { B } ) ~~ 2o ) ) | 
						
							| 5 |  | df-pr |  |-  { A , B } = ( { A } u. { B } ) | 
						
							| 6 | 5 | breq1i |  |-  ( { A , B } ~~ 2o <-> ( { A } u. { B } ) ~~ 2o ) | 
						
							| 7 | 4 6 | bitr4di |  |-  ( ( { A } ~~ 1o /\ { B } ~~ 1o ) -> ( ( { A } i^i { B } ) = (/) <-> { A , B } ~~ 2o ) ) | 
						
							| 8 | 7 | biimpd |  |-  ( ( { A } ~~ 1o /\ { B } ~~ 1o ) -> ( ( { A } i^i { B } ) = (/) -> { A , B } ~~ 2o ) ) | 
						
							| 9 | 2 3 8 | syl2an |  |-  ( ( A e. C /\ B e. D ) -> ( ( { A } i^i { B } ) = (/) -> { A , B } ~~ 2o ) ) | 
						
							| 10 | 9 | ex |  |-  ( A e. C -> ( B e. D -> ( ( { A } i^i { B } ) = (/) -> { A , B } ~~ 2o ) ) ) | 
						
							| 11 | 1 10 | syl7 |  |-  ( A e. C -> ( B e. D -> ( A =/= B -> { A , B } ~~ 2o ) ) ) | 
						
							| 12 | 11 | 3imp |  |-  ( ( A e. C /\ B e. D /\ A =/= B ) -> { A , B } ~~ 2o ) |