Metamath Proof Explorer


Theorem en2pr

Description: A class is equinumerous to ordinal two iff it is a pair of distinct sets. (Contributed by RP, 11-Oct-2023)

Ref Expression
Assertion en2pr ( 𝐴 ≈ 2o ↔ ∃ 𝑥𝑦 ( 𝐴 = { 𝑥 , 𝑦 } ∧ 𝑥𝑦 ) )

Proof

Step Hyp Ref Expression
1 en2 ( 𝐴 ≈ 2o → ∃ 𝑥𝑦 𝐴 = { 𝑥 , 𝑦 } )
2 1 pm4.71ri ( 𝐴 ≈ 2o ↔ ( ∃ 𝑥𝑦 𝐴 = { 𝑥 , 𝑦 } ∧ 𝐴 ≈ 2o ) )
3 19.41vv ( ∃ 𝑥𝑦 ( 𝐴 = { 𝑥 , 𝑦 } ∧ 𝐴 ≈ 2o ) ↔ ( ∃ 𝑥𝑦 𝐴 = { 𝑥 , 𝑦 } ∧ 𝐴 ≈ 2o ) )
4 breq1 ( 𝐴 = { 𝑥 , 𝑦 } → ( 𝐴 ≈ 2o ↔ { 𝑥 , 𝑦 } ≈ 2o ) )
5 pr2ne ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( { 𝑥 , 𝑦 } ≈ 2o𝑥𝑦 ) )
6 5 el2v ( { 𝑥 , 𝑦 } ≈ 2o𝑥𝑦 )
7 4 6 bitrdi ( 𝐴 = { 𝑥 , 𝑦 } → ( 𝐴 ≈ 2o𝑥𝑦 ) )
8 7 pm5.32i ( ( 𝐴 = { 𝑥 , 𝑦 } ∧ 𝐴 ≈ 2o ) ↔ ( 𝐴 = { 𝑥 , 𝑦 } ∧ 𝑥𝑦 ) )
9 8 2exbii ( ∃ 𝑥𝑦 ( 𝐴 = { 𝑥 , 𝑦 } ∧ 𝐴 ≈ 2o ) ↔ ∃ 𝑥𝑦 ( 𝐴 = { 𝑥 , 𝑦 } ∧ 𝑥𝑦 ) )
10 2 3 9 3bitr2i ( 𝐴 ≈ 2o ↔ ∃ 𝑥𝑦 ( 𝐴 = { 𝑥 , 𝑦 } ∧ 𝑥𝑦 ) )