Step |
Hyp |
Ref |
Expression |
1 |
|
en2 |
⊢ ( 𝐴 ≈ 2o → ∃ 𝑥 ∃ 𝑦 𝐴 = { 𝑥 , 𝑦 } ) |
2 |
1
|
pm4.71ri |
⊢ ( 𝐴 ≈ 2o ↔ ( ∃ 𝑥 ∃ 𝑦 𝐴 = { 𝑥 , 𝑦 } ∧ 𝐴 ≈ 2o ) ) |
3 |
|
19.41vv |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝐴 = { 𝑥 , 𝑦 } ∧ 𝐴 ≈ 2o ) ↔ ( ∃ 𝑥 ∃ 𝑦 𝐴 = { 𝑥 , 𝑦 } ∧ 𝐴 ≈ 2o ) ) |
4 |
|
breq1 |
⊢ ( 𝐴 = { 𝑥 , 𝑦 } → ( 𝐴 ≈ 2o ↔ { 𝑥 , 𝑦 } ≈ 2o ) ) |
5 |
|
pr2ne |
⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( { 𝑥 , 𝑦 } ≈ 2o ↔ 𝑥 ≠ 𝑦 ) ) |
6 |
5
|
el2v |
⊢ ( { 𝑥 , 𝑦 } ≈ 2o ↔ 𝑥 ≠ 𝑦 ) |
7 |
4 6
|
bitrdi |
⊢ ( 𝐴 = { 𝑥 , 𝑦 } → ( 𝐴 ≈ 2o ↔ 𝑥 ≠ 𝑦 ) ) |
8 |
7
|
pm5.32i |
⊢ ( ( 𝐴 = { 𝑥 , 𝑦 } ∧ 𝐴 ≈ 2o ) ↔ ( 𝐴 = { 𝑥 , 𝑦 } ∧ 𝑥 ≠ 𝑦 ) ) |
9 |
8
|
2exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝐴 = { 𝑥 , 𝑦 } ∧ 𝐴 ≈ 2o ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝐴 = { 𝑥 , 𝑦 } ∧ 𝑥 ≠ 𝑦 ) ) |
10 |
2 3 9
|
3bitr2i |
⊢ ( 𝐴 ≈ 2o ↔ ∃ 𝑥 ∃ 𝑦 ( 𝐴 = { 𝑥 , 𝑦 } ∧ 𝑥 ≠ 𝑦 ) ) |