Metamath Proof Explorer


Theorem pr2cv

Description: If an unordered pair is equinumerous to ordinal two, then both parts are sets. (Contributed by RP, 8-Oct-2023)

Ref Expression
Assertion pr2cv ( { 𝐴 , 𝐵 } ≈ 2o → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )

Proof

Step Hyp Ref Expression
1 en2 ( { 𝐴 , 𝐵 } ≈ 2o → ∃ 𝑥𝑦 { 𝐴 , 𝐵 } = { 𝑥 , 𝑦 } )
2 breq1 ( { 𝐴 , 𝐵 } = { 𝑥 , 𝑦 } → ( { 𝐴 , 𝐵 } ≈ 2o ↔ { 𝑥 , 𝑦 } ≈ 2o ) )
3 vex 𝑥 ∈ V
4 vex 𝑦 ∈ V
5 pr2ne ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( { 𝑥 , 𝑦 } ≈ 2o𝑥𝑦 ) )
6 5 el2v ( { 𝑥 , 𝑦 } ≈ 2o𝑥𝑦 )
7 6 biimpi ( { 𝑥 , 𝑦 } ≈ 2o𝑥𝑦 )
8 preq12nebg ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑥𝑦 ) → ( { 𝑥 , 𝑦 } = { 𝐴 , 𝐵 } ↔ ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∨ ( 𝑥 = 𝐵𝑦 = 𝐴 ) ) ) )
9 eqvisset ( 𝑥 = 𝐴𝐴 ∈ V )
10 eqvisset ( 𝑦 = 𝐵𝐵 ∈ V )
11 9 10 anim12i ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
12 eqvisset ( 𝑥 = 𝐵𝐵 ∈ V )
13 eqvisset ( 𝑦 = 𝐴𝐴 ∈ V )
14 12 13 anim12ci ( ( 𝑥 = 𝐵𝑦 = 𝐴 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
15 11 14 jaoi ( ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∨ ( 𝑥 = 𝐵𝑦 = 𝐴 ) ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
16 8 15 syl6bi ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑥𝑦 ) → ( { 𝑥 , 𝑦 } = { 𝐴 , 𝐵 } → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) )
17 3 4 7 16 mp3an12i ( { 𝑥 , 𝑦 } ≈ 2o → ( { 𝑥 , 𝑦 } = { 𝐴 , 𝐵 } → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) )
18 17 com12 ( { 𝑥 , 𝑦 } = { 𝐴 , 𝐵 } → ( { 𝑥 , 𝑦 } ≈ 2o → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) )
19 18 eqcoms ( { 𝐴 , 𝐵 } = { 𝑥 , 𝑦 } → ( { 𝑥 , 𝑦 } ≈ 2o → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) )
20 2 19 sylbid ( { 𝐴 , 𝐵 } = { 𝑥 , 𝑦 } → ( { 𝐴 , 𝐵 } ≈ 2o → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) )
21 20 exlimivv ( ∃ 𝑥𝑦 { 𝐴 , 𝐵 } = { 𝑥 , 𝑦 } → ( { 𝐴 , 𝐵 } ≈ 2o → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) )
22 1 21 mpcom ( { 𝐴 , 𝐵 } ≈ 2o → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )