| Step |
Hyp |
Ref |
Expression |
| 1 |
|
en2 |
⊢ ( { 𝐴 , 𝐵 } ≈ 2o → ∃ 𝑥 ∃ 𝑦 { 𝐴 , 𝐵 } = { 𝑥 , 𝑦 } ) |
| 2 |
|
breq1 |
⊢ ( { 𝐴 , 𝐵 } = { 𝑥 , 𝑦 } → ( { 𝐴 , 𝐵 } ≈ 2o ↔ { 𝑥 , 𝑦 } ≈ 2o ) ) |
| 3 |
|
vex |
⊢ 𝑥 ∈ V |
| 4 |
|
vex |
⊢ 𝑦 ∈ V |
| 5 |
|
pr2ne |
⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( { 𝑥 , 𝑦 } ≈ 2o ↔ 𝑥 ≠ 𝑦 ) ) |
| 6 |
5
|
el2v |
⊢ ( { 𝑥 , 𝑦 } ≈ 2o ↔ 𝑥 ≠ 𝑦 ) |
| 7 |
6
|
biimpi |
⊢ ( { 𝑥 , 𝑦 } ≈ 2o → 𝑥 ≠ 𝑦 ) |
| 8 |
|
preq12nebg |
⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑥 ≠ 𝑦 ) → ( { 𝑥 , 𝑦 } = { 𝐴 , 𝐵 } ↔ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ( 𝑥 = 𝐵 ∧ 𝑦 = 𝐴 ) ) ) ) |
| 9 |
|
eqvisset |
⊢ ( 𝑥 = 𝐴 → 𝐴 ∈ V ) |
| 10 |
|
eqvisset |
⊢ ( 𝑦 = 𝐵 → 𝐵 ∈ V ) |
| 11 |
9 10
|
anim12i |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 12 |
|
eqvisset |
⊢ ( 𝑥 = 𝐵 → 𝐵 ∈ V ) |
| 13 |
|
eqvisset |
⊢ ( 𝑦 = 𝐴 → 𝐴 ∈ V ) |
| 14 |
12 13
|
anim12ci |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑦 = 𝐴 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 15 |
11 14
|
jaoi |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ( 𝑥 = 𝐵 ∧ 𝑦 = 𝐴 ) ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 16 |
8 15
|
biimtrdi |
⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑥 ≠ 𝑦 ) → ( { 𝑥 , 𝑦 } = { 𝐴 , 𝐵 } → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
| 17 |
3 4 7 16
|
mp3an12i |
⊢ ( { 𝑥 , 𝑦 } ≈ 2o → ( { 𝑥 , 𝑦 } = { 𝐴 , 𝐵 } → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
| 18 |
17
|
com12 |
⊢ ( { 𝑥 , 𝑦 } = { 𝐴 , 𝐵 } → ( { 𝑥 , 𝑦 } ≈ 2o → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
| 19 |
18
|
eqcoms |
⊢ ( { 𝐴 , 𝐵 } = { 𝑥 , 𝑦 } → ( { 𝑥 , 𝑦 } ≈ 2o → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
| 20 |
2 19
|
sylbid |
⊢ ( { 𝐴 , 𝐵 } = { 𝑥 , 𝑦 } → ( { 𝐴 , 𝐵 } ≈ 2o → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
| 21 |
20
|
exlimivv |
⊢ ( ∃ 𝑥 ∃ 𝑦 { 𝐴 , 𝐵 } = { 𝑥 , 𝑦 } → ( { 𝐴 , 𝐵 } ≈ 2o → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
| 22 |
1 21
|
mpcom |
⊢ ( { 𝐴 , 𝐵 } ≈ 2o → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |