Step |
Hyp |
Ref |
Expression |
1 |
|
en2 |
⊢ ( { 𝐴 , 𝐵 } ≈ 2o → ∃ 𝑥 ∃ 𝑦 { 𝐴 , 𝐵 } = { 𝑥 , 𝑦 } ) |
2 |
|
breq1 |
⊢ ( { 𝐴 , 𝐵 } = { 𝑥 , 𝑦 } → ( { 𝐴 , 𝐵 } ≈ 2o ↔ { 𝑥 , 𝑦 } ≈ 2o ) ) |
3 |
|
vex |
⊢ 𝑥 ∈ V |
4 |
|
vex |
⊢ 𝑦 ∈ V |
5 |
|
pr2ne |
⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( { 𝑥 , 𝑦 } ≈ 2o ↔ 𝑥 ≠ 𝑦 ) ) |
6 |
5
|
el2v |
⊢ ( { 𝑥 , 𝑦 } ≈ 2o ↔ 𝑥 ≠ 𝑦 ) |
7 |
6
|
biimpi |
⊢ ( { 𝑥 , 𝑦 } ≈ 2o → 𝑥 ≠ 𝑦 ) |
8 |
|
preq12nebg |
⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑥 ≠ 𝑦 ) → ( { 𝑥 , 𝑦 } = { 𝐴 , 𝐵 } ↔ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ( 𝑥 = 𝐵 ∧ 𝑦 = 𝐴 ) ) ) ) |
9 |
|
eqvisset |
⊢ ( 𝑥 = 𝐴 → 𝐴 ∈ V ) |
10 |
|
eqvisset |
⊢ ( 𝑦 = 𝐵 → 𝐵 ∈ V ) |
11 |
9 10
|
anim12i |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
12 |
|
eqvisset |
⊢ ( 𝑥 = 𝐵 → 𝐵 ∈ V ) |
13 |
|
eqvisset |
⊢ ( 𝑦 = 𝐴 → 𝐴 ∈ V ) |
14 |
12 13
|
anim12ci |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑦 = 𝐴 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
15 |
11 14
|
jaoi |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ( 𝑥 = 𝐵 ∧ 𝑦 = 𝐴 ) ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
16 |
8 15
|
syl6bi |
⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑥 ≠ 𝑦 ) → ( { 𝑥 , 𝑦 } = { 𝐴 , 𝐵 } → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
17 |
3 4 7 16
|
mp3an12i |
⊢ ( { 𝑥 , 𝑦 } ≈ 2o → ( { 𝑥 , 𝑦 } = { 𝐴 , 𝐵 } → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
18 |
17
|
com12 |
⊢ ( { 𝑥 , 𝑦 } = { 𝐴 , 𝐵 } → ( { 𝑥 , 𝑦 } ≈ 2o → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
19 |
18
|
eqcoms |
⊢ ( { 𝐴 , 𝐵 } = { 𝑥 , 𝑦 } → ( { 𝑥 , 𝑦 } ≈ 2o → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
20 |
2 19
|
sylbid |
⊢ ( { 𝐴 , 𝐵 } = { 𝑥 , 𝑦 } → ( { 𝐴 , 𝐵 } ≈ 2o → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
21 |
20
|
exlimivv |
⊢ ( ∃ 𝑥 ∃ 𝑦 { 𝐴 , 𝐵 } = { 𝑥 , 𝑦 } → ( { 𝐴 , 𝐵 } ≈ 2o → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) ) |
22 |
1 21
|
mpcom |
⊢ ( { 𝐴 , 𝐵 } ≈ 2o → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |