| Step |
Hyp |
Ref |
Expression |
| 1 |
|
en2 |
|- ( { A , B } ~~ 2o -> E. x E. y { A , B } = { x , y } ) |
| 2 |
|
breq1 |
|- ( { A , B } = { x , y } -> ( { A , B } ~~ 2o <-> { x , y } ~~ 2o ) ) |
| 3 |
|
vex |
|- x e. _V |
| 4 |
|
vex |
|- y e. _V |
| 5 |
|
pr2ne |
|- ( ( x e. _V /\ y e. _V ) -> ( { x , y } ~~ 2o <-> x =/= y ) ) |
| 6 |
5
|
el2v |
|- ( { x , y } ~~ 2o <-> x =/= y ) |
| 7 |
6
|
biimpi |
|- ( { x , y } ~~ 2o -> x =/= y ) |
| 8 |
|
preq12nebg |
|- ( ( x e. _V /\ y e. _V /\ x =/= y ) -> ( { x , y } = { A , B } <-> ( ( x = A /\ y = B ) \/ ( x = B /\ y = A ) ) ) ) |
| 9 |
|
eqvisset |
|- ( x = A -> A e. _V ) |
| 10 |
|
eqvisset |
|- ( y = B -> B e. _V ) |
| 11 |
9 10
|
anim12i |
|- ( ( x = A /\ y = B ) -> ( A e. _V /\ B e. _V ) ) |
| 12 |
|
eqvisset |
|- ( x = B -> B e. _V ) |
| 13 |
|
eqvisset |
|- ( y = A -> A e. _V ) |
| 14 |
12 13
|
anim12ci |
|- ( ( x = B /\ y = A ) -> ( A e. _V /\ B e. _V ) ) |
| 15 |
11 14
|
jaoi |
|- ( ( ( x = A /\ y = B ) \/ ( x = B /\ y = A ) ) -> ( A e. _V /\ B e. _V ) ) |
| 16 |
8 15
|
biimtrdi |
|- ( ( x e. _V /\ y e. _V /\ x =/= y ) -> ( { x , y } = { A , B } -> ( A e. _V /\ B e. _V ) ) ) |
| 17 |
3 4 7 16
|
mp3an12i |
|- ( { x , y } ~~ 2o -> ( { x , y } = { A , B } -> ( A e. _V /\ B e. _V ) ) ) |
| 18 |
17
|
com12 |
|- ( { x , y } = { A , B } -> ( { x , y } ~~ 2o -> ( A e. _V /\ B e. _V ) ) ) |
| 19 |
18
|
eqcoms |
|- ( { A , B } = { x , y } -> ( { x , y } ~~ 2o -> ( A e. _V /\ B e. _V ) ) ) |
| 20 |
2 19
|
sylbid |
|- ( { A , B } = { x , y } -> ( { A , B } ~~ 2o -> ( A e. _V /\ B e. _V ) ) ) |
| 21 |
20
|
exlimivv |
|- ( E. x E. y { A , B } = { x , y } -> ( { A , B } ~~ 2o -> ( A e. _V /\ B e. _V ) ) ) |
| 22 |
1 21
|
mpcom |
|- ( { A , B } ~~ 2o -> ( A e. _V /\ B e. _V ) ) |