Metamath Proof Explorer


Theorem pr2cv

Description: If an unordered pair is equinumerous to ordinal two, then both parts are sets. (Contributed by RP, 8-Oct-2023)

Ref Expression
Assertion pr2cv
|- ( { A , B } ~~ 2o -> ( A e. _V /\ B e. _V ) )

Proof

Step Hyp Ref Expression
1 en2
 |-  ( { A , B } ~~ 2o -> E. x E. y { A , B } = { x , y } )
2 breq1
 |-  ( { A , B } = { x , y } -> ( { A , B } ~~ 2o <-> { x , y } ~~ 2o ) )
3 vex
 |-  x e. _V
4 vex
 |-  y e. _V
5 pr2ne
 |-  ( ( x e. _V /\ y e. _V ) -> ( { x , y } ~~ 2o <-> x =/= y ) )
6 5 el2v
 |-  ( { x , y } ~~ 2o <-> x =/= y )
7 6 biimpi
 |-  ( { x , y } ~~ 2o -> x =/= y )
8 preq12nebg
 |-  ( ( x e. _V /\ y e. _V /\ x =/= y ) -> ( { x , y } = { A , B } <-> ( ( x = A /\ y = B ) \/ ( x = B /\ y = A ) ) ) )
9 eqvisset
 |-  ( x = A -> A e. _V )
10 eqvisset
 |-  ( y = B -> B e. _V )
11 9 10 anim12i
 |-  ( ( x = A /\ y = B ) -> ( A e. _V /\ B e. _V ) )
12 eqvisset
 |-  ( x = B -> B e. _V )
13 eqvisset
 |-  ( y = A -> A e. _V )
14 12 13 anim12ci
 |-  ( ( x = B /\ y = A ) -> ( A e. _V /\ B e. _V ) )
15 11 14 jaoi
 |-  ( ( ( x = A /\ y = B ) \/ ( x = B /\ y = A ) ) -> ( A e. _V /\ B e. _V ) )
16 8 15 syl6bi
 |-  ( ( x e. _V /\ y e. _V /\ x =/= y ) -> ( { x , y } = { A , B } -> ( A e. _V /\ B e. _V ) ) )
17 3 4 7 16 mp3an12i
 |-  ( { x , y } ~~ 2o -> ( { x , y } = { A , B } -> ( A e. _V /\ B e. _V ) ) )
18 17 com12
 |-  ( { x , y } = { A , B } -> ( { x , y } ~~ 2o -> ( A e. _V /\ B e. _V ) ) )
19 18 eqcoms
 |-  ( { A , B } = { x , y } -> ( { x , y } ~~ 2o -> ( A e. _V /\ B e. _V ) ) )
20 2 19 sylbid
 |-  ( { A , B } = { x , y } -> ( { A , B } ~~ 2o -> ( A e. _V /\ B e. _V ) ) )
21 20 exlimivv
 |-  ( E. x E. y { A , B } = { x , y } -> ( { A , B } ~~ 2o -> ( A e. _V /\ B e. _V ) ) )
22 1 21 mpcom
 |-  ( { A , B } ~~ 2o -> ( A e. _V /\ B e. _V ) )