Metamath Proof Explorer


Theorem en2pr

Description: A class is equinumerous to ordinal two iff it is a pair of distinct sets. (Contributed by RP, 11-Oct-2023)

Ref Expression
Assertion en2pr
|- ( A ~~ 2o <-> E. x E. y ( A = { x , y } /\ x =/= y ) )

Proof

Step Hyp Ref Expression
1 en2
 |-  ( A ~~ 2o -> E. x E. y A = { x , y } )
2 1 pm4.71ri
 |-  ( A ~~ 2o <-> ( E. x E. y A = { x , y } /\ A ~~ 2o ) )
3 19.41vv
 |-  ( E. x E. y ( A = { x , y } /\ A ~~ 2o ) <-> ( E. x E. y A = { x , y } /\ A ~~ 2o ) )
4 breq1
 |-  ( A = { x , y } -> ( A ~~ 2o <-> { x , y } ~~ 2o ) )
5 pr2ne
 |-  ( ( x e. _V /\ y e. _V ) -> ( { x , y } ~~ 2o <-> x =/= y ) )
6 5 el2v
 |-  ( { x , y } ~~ 2o <-> x =/= y )
7 4 6 bitrdi
 |-  ( A = { x , y } -> ( A ~~ 2o <-> x =/= y ) )
8 7 pm5.32i
 |-  ( ( A = { x , y } /\ A ~~ 2o ) <-> ( A = { x , y } /\ x =/= y ) )
9 8 2exbii
 |-  ( E. x E. y ( A = { x , y } /\ A ~~ 2o ) <-> E. x E. y ( A = { x , y } /\ x =/= y ) )
10 2 3 9 3bitr2i
 |-  ( A ~~ 2o <-> E. x E. y ( A = { x , y } /\ x =/= y ) )