Step |
Hyp |
Ref |
Expression |
1 |
|
en2 |
|- ( A ~~ 2o -> E. x E. y A = { x , y } ) |
2 |
1
|
pm4.71ri |
|- ( A ~~ 2o <-> ( E. x E. y A = { x , y } /\ A ~~ 2o ) ) |
3 |
|
19.41vv |
|- ( E. x E. y ( A = { x , y } /\ A ~~ 2o ) <-> ( E. x E. y A = { x , y } /\ A ~~ 2o ) ) |
4 |
|
breq1 |
|- ( A = { x , y } -> ( A ~~ 2o <-> { x , y } ~~ 2o ) ) |
5 |
|
pr2ne |
|- ( ( x e. _V /\ y e. _V ) -> ( { x , y } ~~ 2o <-> x =/= y ) ) |
6 |
5
|
el2v |
|- ( { x , y } ~~ 2o <-> x =/= y ) |
7 |
4 6
|
bitrdi |
|- ( A = { x , y } -> ( A ~~ 2o <-> x =/= y ) ) |
8 |
7
|
pm5.32i |
|- ( ( A = { x , y } /\ A ~~ 2o ) <-> ( A = { x , y } /\ x =/= y ) ) |
9 |
8
|
2exbii |
|- ( E. x E. y ( A = { x , y } /\ A ~~ 2o ) <-> E. x E. y ( A = { x , y } /\ x =/= y ) ) |
10 |
2 3 9
|
3bitr2i |
|- ( A ~~ 2o <-> E. x E. y ( A = { x , y } /\ x =/= y ) ) |