Metamath Proof Explorer


Theorem hlass

Description: Hilbert space vector addition is associative. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hladdf.1 X=BaseSetU
hladdf.2 G=+vU
Assertion hlass UCHilOLDAXBXCXAGBGC=AGBGC

Proof

Step Hyp Ref Expression
1 hladdf.1 X=BaseSetU
2 hladdf.2 G=+vU
3 hlnv UCHilOLDUNrmCVec
4 1 2 nvass UNrmCVecAXBXCXAGBGC=AGBGC
5 3 4 sylan UCHilOLDAXBXCXAGBGC=AGBGC