Metamath Proof Explorer


Definition df-ba

Description: Define the base set of a normed complex vector space. (Contributed by NM, 23-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion df-ba BaseSet=xVran+vx

Detailed syntax breakdown

Step Hyp Ref Expression
0 cba classBaseSet
1 vx setvarx
2 cvv classV
3 cpv class+v
4 1 cv setvarx
5 4 3 cfv class+vx
6 5 crn classran+vx
7 1 2 6 cmpt classxVran+vx
8 0 7 wceq wffBaseSet=xVran+vx