Metamath Proof Explorer
Table of Contents - 19.1. Axiomatization of complex pre-Hilbert spaces
- Basic Hilbert space definitions
- chba
- cva
- csm
- csp
- cno
- c0v
- cmv
- ccauold
- chli
- csh
- cch
- cort
- cph
- cspn
- chj
- chsup
- c0h
- ccm
- cpjh
- chos
- chot
- chod
- chfs
- chft
- ch0o
- chio
- cnop
- ccop
- clo
- cbo
- cuo
- cho
- cnmf
- cnl
- ccnfn
- clf
- cado
- cbr
- ck
- cleo
- cei
- cel
- cspc
- cst
- chst
- ccv
- cat
- cmd
- cdmd
- Preliminary ZFC lemmas
- df-hnorm
- df-hba
- df-h0v
- df-hvsub
- df-hlim
- df-hcau
- h2hva
- h2hsm
- h2hnm
- h2hvs
- h2hmetdval
- h2hcau
- h2hlm
- Derive the Hilbert space axioms from ZFC set theory
- axhilex-zf
- axhfvadd-zf
- axhvcom-zf
- axhvass-zf
- axhv0cl-zf
- axhvaddid-zf
- axhfvmul-zf
- axhvmulid-zf
- axhvmulass-zf
- axhvdistr1-zf
- axhvdistr2-zf
- axhvmul0-zf
- axhfi-zf
- axhis1-zf
- axhis2-zf
- axhis3-zf
- axhis4-zf
- axhcompl-zf
- Introduce the vector space axioms for a Hilbert space
- ax-hilex
- ax-hfvadd
- ax-hvcom
- ax-hvass
- ax-hv0cl
- ax-hvaddid
- ax-hfvmul
- ax-hvmulid
- ax-hvmulass
- ax-hvdistr1
- ax-hvdistr2
- ax-hvmul0
- Vector operations
- hvmulex
- hvaddcl
- hvmulcl
- hvmulcli
- hvsubf
- hvsubval
- hvsubcl
- hvaddcli
- hvcomi
- hvsubvali
- hvsubcli
- ifhvhv0
- hvaddid2
- hvmul0
- hvmul0or
- hvsubid
- hvnegid
- hv2neg
- hvaddid2i
- hvnegidi
- hv2negi
- hvm1neg
- hvaddsubval
- hvadd32
- hvadd12
- hvadd4
- hvsub4
- hvaddsub12
- hvpncan
- hvpncan2
- hvaddsubass
- hvpncan3
- hvmulcom
- hvsubass
- hvsub32
- hvmulassi
- hvmulcomi
- hvmul2negi
- hvsubdistr1
- hvsubdistr2
- hvdistr1i
- hvsubdistr1i
- hvassi
- hvadd32i
- hvsubassi
- hvsub32i
- hvadd12i
- hvadd4i
- hvsubsub4i
- hvsubsub4
- hv2times
- hvnegdii
- hvsubeq0i
- hvsubcan2i
- hvaddcani
- hvsubaddi
- hvnegdi
- hvsubeq0
- hvaddeq0
- hvaddcan
- hvaddcan2
- hvmulcan
- hvmulcan2
- hvsubcan
- hvsubcan2
- hvsub0
- hvsubadd
- hvaddsub4
- Inner product postulates for a Hilbert space
- ax-hfi
- hicl
- hicli
- ax-his1
- ax-his2
- ax-his3
- ax-his4