Metamath Proof Explorer


Theorem pjhthlem1

Description: Lemma for pjhth . (Contributed by NM, 10-Oct-1999) (Revised by Mario Carneiro, 15-May-2014) (Proof shortened by AV, 10-Jul-2022) (New usage is discouraged.)

Ref Expression
Hypotheses pjhth.1 HC
pjhth.2 φA
pjhth.3 φBH
pjhth.4 φCH
pjhth.5 φxHnormA-BnormA-x
pjhth.6 T=A-BihCCihC+1
Assertion pjhthlem1 φA-BihC=0

Proof

Step Hyp Ref Expression
1 pjhth.1 HC
2 pjhth.2 φA
3 pjhth.3 φBH
4 pjhth.4 φCH
5 pjhth.5 φxHnormA-BnormA-x
6 pjhth.6 T=A-BihCCihC+1
7 1 cheli BHB
8 3 7 syl φB
9 hvsubcl ABA-B
10 2 8 9 syl2anc φA-B
11 1 cheli CHC
12 4 11 syl φC
13 hicl A-BCA-BihC
14 10 12 13 syl2anc φA-BihC
15 14 abscld φA-BihC
16 15 recnd φA-BihC
17 15 resqcld φA-BihC2
18 17 renegcld φA-BihC2
19 hiidrcl CCihC
20 12 19 syl φCihC
21 2re 2
22 readdcl CihC2CihC+2
23 20 21 22 sylancl φCihC+2
24 0red φ0
25 peano2re CihCCihC+1
26 20 25 syl φCihC+1
27 hiidge0 C0CihC
28 12 27 syl φ0CihC
29 20 ltp1d φCihC<CihC+1
30 24 20 26 28 29 lelttrd φ0<CihC+1
31 26 ltp1d φCihC+1<CihC+1+1
32 df-2 2=1+1
33 32 oveq2i CihC+2=CihC+1+1
34 20 recnd φCihC
35 ax-1cn 1
36 addass CihC11CihC+1+1=CihC+1+1
37 35 35 36 mp3an23 CihCCihC+1+1=CihC+1+1
38 34 37 syl φCihC+1+1=CihC+1+1
39 33 38 eqtr4id φCihC+2=CihC+1+1
40 31 39 breqtrrd φCihC+1<CihC+2
41 24 26 23 30 40 lttrd φ0<CihC+2
42 23 41 elrpd φCihC+2+
43 oveq2 x=B+TCA-x=A-B+TC
44 43 fveq2d x=B+TCnormA-x=normA-B+TC
45 44 breq2d x=B+TCnormA-BnormA-xnormA-BnormA-B+TC
46 1 chshii HS
47 46 a1i φHS
48 26 recnd φCihC+1
49 20 28 ge0p1rpd φCihC+1+
50 49 rpne0d φCihC+10
51 14 48 50 divcld φA-BihCCihC+1
52 6 51 eqeltrid φT
53 shmulcl HSTCHTCH
54 47 52 4 53 syl3anc φTCH
55 shaddcl HSBHTCHB+TCH
56 47 3 54 55 syl3anc φB+TCH
57 45 5 56 rspcdva φnormA-BnormA-B+TC
58 1 cheli TCHTC
59 54 58 syl φTC
60 hvsubass ABTCA-B-TC=A-B+TC
61 2 8 59 60 syl3anc φA-B-TC=A-B+TC
62 61 fveq2d φnormA-B-TC=normA-B+TC
63 57 62 breqtrrd φnormA-BnormA-B-TC
64 normcl A-BnormA-B
65 10 64 syl φnormA-B
66 hvsubcl A-BTCA-B-TC
67 10 59 66 syl2anc φA-B-TC
68 normcl A-B-TCnormA-B-TC
69 67 68 syl φnormA-B-TC
70 normge0 A-B0normA-B
71 10 70 syl φ0normA-B
72 24 65 69 71 63 letrd φ0normA-B-TC
73 65 69 71 72 le2sqd φnormA-BnormA-B-TCnormA-B2normA-B-TC2
74 63 73 mpbid φnormA-B2normA-B-TC2
75 69 resqcld φnormA-B-TC2
76 65 resqcld φnormA-B2
77 75 76 subge0d φ0normA-B-TC2normA-B2normA-B2normA-B-TC2
78 74 77 mpbird φ0normA-B-TC2normA-B2
79 2z 2
80 rpexpcl CihC+1+2CihC+12+
81 49 79 80 sylancl φCihC+12+
82 17 81 rerpdivcld φA-BihC2CihC+12
83 82 23 remulcld φA-BihC2CihC+12CihC+2
84 83 recnd φA-BihC2CihC+12CihC+2
85 84 negcld φA-BihC2CihC+12CihC+2
86 hicl A-BA-BA-BihA-B
87 10 10 86 syl2anc φA-BihA-B
88 85 87 pncand φA-BihC2CihC+12CihC+2+A-BihA-B-A-BihA-B=A-BihC2CihC+12CihC+2
89 normsq A-B-TCnormA-B-TC2=A-B-TCihA-B-TC
90 67 89 syl φnormA-B-TC2=A-B-TCihA-B-TC
91 his2sub A-BTCA-B-TCA-B-TCihA-B-TC=A-BihA-B-TCTCihA-B-TC
92 10 59 67 91 syl3anc φA-B-TCihA-B-TC=A-BihA-B-TCTCihA-B-TC
93 his2sub2 A-BA-BTCA-BihA-B-TC=A-BihA-BA-BihTC
94 10 10 59 93 syl3anc φA-BihA-B-TC=A-BihA-BA-BihTC
95 94 oveq1d φA-BihA-B-TCTCihA-B-TC=A-BihA-B-A-BihTC-TCihA-B-TC
96 hicl A-BTCA-BihTC
97 10 59 96 syl2anc φA-BihTC
98 his2sub2 TCA-BTCTCihA-B-TC=TCihA-BTCihTC
99 59 10 59 98 syl3anc φTCihA-B-TC=TCihA-BTCihTC
100 hicl TCA-BTCihA-B
101 59 10 100 syl2anc φTCihA-B
102 hicl TCTCTCihTC
103 59 59 102 syl2anc φTCihTC
104 101 103 subcld φTCihA-BTCihTC
105 99 104 eqeltrd φTCihA-B-TC
106 87 97 105 subsub4d φA-BihA-B-A-BihTC-TCihA-B-TC=A-BihA-BA-BihTC+TCihA-B-TC
107 82 recnd φA-BihC2CihC+12
108 35 a1i φ1
109 107 48 108 adddid φA-BihC2CihC+12CihC+1+1=A-BihC2CihC+12CihC+1+A-BihC2CihC+121
110 39 oveq2d φA-BihC2CihC+12CihC+2=A-BihC2CihC+12CihC+1+1
111 his5 TA-BCA-BihTC=TA-BihC
112 52 10 12 111 syl3anc φA-BihTC=TA-BihC
113 52 cjcld φT
114 113 14 mulcomd φTA-BihC=A-BihCT
115 14 cjcld φA-BihC
116 14 115 48 50 divassd φA-BihCA-BihCCihC+1=A-BihCA-BihCCihC+1
117 14 absvalsqd φA-BihC2=A-BihCA-BihC
118 117 oveq1d φA-BihC2CihC+1=A-BihCA-BihCCihC+1
119 6 fveq2i T=A-BihCCihC+1
120 14 48 50 cjdivd φA-BihCCihC+1=A-BihCCihC+1
121 26 cjred φCihC+1=CihC+1
122 121 oveq2d φA-BihCCihC+1=A-BihCCihC+1
123 120 122 eqtrd φA-BihCCihC+1=A-BihCCihC+1
124 119 123 eqtrid φT=A-BihCCihC+1
125 124 oveq2d φA-BihCT=A-BihCA-BihCCihC+1
126 116 118 125 3eqtr4rd φA-BihCT=A-BihC2CihC+1
127 112 114 126 3eqtrd φA-BihTC=A-BihC2CihC+1
128 17 recnd φA-BihC2
129 128 48 mulcomd φA-BihC2CihC+1=CihC+1A-BihC2
130 48 sqvald φCihC+12=CihC+1CihC+1
131 129 130 oveq12d φA-BihC2CihC+1CihC+12=CihC+1A-BihC2CihC+1CihC+1
132 128 48 48 50 50 divcan5d φCihC+1A-BihC2CihC+1CihC+1=A-BihC2CihC+1
133 131 132 eqtr2d φA-BihC2CihC+1=A-BihC2CihC+1CihC+12
134 26 resqcld φCihC+12
135 134 recnd φCihC+12
136 81 rpne0d φCihC+120
137 128 48 135 136 div23d φA-BihC2CihC+1CihC+12=A-BihC2CihC+12CihC+1
138 127 133 137 3eqtrd φA-BihTC=A-BihC2CihC+12CihC+1
139 82 26 remulcld φA-BihC2CihC+12CihC+1
140 138 139 eqeltrd φA-BihTC
141 hire A-BTCA-BihTCA-BihTC=TCihA-B
142 10 59 141 syl2anc φA-BihTCA-BihTC=TCihA-B
143 140 142 mpbid φA-BihTC=TCihA-B
144 143 138 eqtr3d φTCihA-B=A-BihC2CihC+12CihC+1
145 his35 TTCCTCihTC=TTCihC
146 52 52 12 12 145 syl22anc φTCihTC=TTCihC
147 6 fveq2i T=A-BihCCihC+1
148 14 48 50 absdivd φA-BihCCihC+1=A-BihCCihC+1
149 49 rpge0d φ0CihC+1
150 26 149 absidd φCihC+1=CihC+1
151 150 oveq2d φA-BihCCihC+1=A-BihCCihC+1
152 148 151 eqtrd φA-BihCCihC+1=A-BihCCihC+1
153 147 152 eqtrid φT=A-BihCCihC+1
154 153 oveq1d φT2=A-BihCCihC+12
155 52 absvalsqd φT2=TT
156 16 48 50 sqdivd φA-BihCCihC+12=A-BihC2CihC+12
157 154 155 156 3eqtr3d φTT=A-BihC2CihC+12
158 157 oveq1d φTTCihC=A-BihC2CihC+12CihC
159 146 158 eqtrd φTCihTC=A-BihC2CihC+12CihC
160 144 159 oveq12d φTCihA-BTCihTC=A-BihC2CihC+12CihC+1A-BihC2CihC+12CihC
161 pncan2 CihC1CihC+1-CihC=1
162 34 35 161 sylancl φCihC+1-CihC=1
163 162 oveq2d φA-BihC2CihC+12CihC+1-CihC=A-BihC2CihC+121
164 107 48 34 subdid φA-BihC2CihC+12CihC+1-CihC=A-BihC2CihC+12CihC+1A-BihC2CihC+12CihC
165 163 164 eqtr3d φA-BihC2CihC+121=A-BihC2CihC+12CihC+1A-BihC2CihC+12CihC
166 160 99 165 3eqtr4d φTCihA-B-TC=A-BihC2CihC+121
167 138 166 oveq12d φA-BihTC+TCihA-B-TC=A-BihC2CihC+12CihC+1+A-BihC2CihC+121
168 109 110 167 3eqtr4rd φA-BihTC+TCihA-B-TC=A-BihC2CihC+12CihC+2
169 168 oveq2d φA-BihA-BA-BihTC+TCihA-B-TC=A-BihA-BA-BihC2CihC+12CihC+2
170 95 106 169 3eqtrd φA-BihA-B-TCTCihA-B-TC=A-BihA-BA-BihC2CihC+12CihC+2
171 90 92 170 3eqtrd φnormA-B-TC2=A-BihA-BA-BihC2CihC+12CihC+2
172 87 84 negsubd φA-BihA-B+A-BihC2CihC+12CihC+2=A-BihA-BA-BihC2CihC+12CihC+2
173 87 85 addcomd φA-BihA-B+A-BihC2CihC+12CihC+2=-A-BihC2CihC+12CihC+2+A-BihA-B
174 171 172 173 3eqtr2d φnormA-B-TC2=-A-BihC2CihC+12CihC+2+A-BihA-B
175 normsq A-BnormA-B2=A-BihA-B
176 10 175 syl φnormA-B2=A-BihA-B
177 174 176 oveq12d φnormA-B-TC2normA-B2=A-BihC2CihC+12CihC+2+A-BihA-B-A-BihA-B
178 23 renegcld φCihC+2
179 178 recnd φCihC+2
180 128 179 135 136 div23d φA-BihC2CihC+2CihC+12=A-BihC2CihC+12CihC+2
181 23 recnd φCihC+2
182 107 181 mulneg2d φA-BihC2CihC+12CihC+2=A-BihC2CihC+12CihC+2
183 180 182 eqtrd φA-BihC2CihC+2CihC+12=A-BihC2CihC+12CihC+2
184 88 177 183 3eqtr4rd φA-BihC2CihC+2CihC+12=normA-B-TC2normA-B2
185 78 184 breqtrrd φ0A-BihC2CihC+2CihC+12
186 17 178 remulcld φA-BihC2CihC+2
187 186 81 ge0divd φ0A-BihC2CihC+20A-BihC2CihC+2CihC+12
188 185 187 mpbird φ0A-BihC2CihC+2
189 mulneg12 A-BihC2CihC+2A-BihC2CihC+2=A-BihC2CihC+2
190 128 181 189 syl2anc φA-BihC2CihC+2=A-BihC2CihC+2
191 188 190 breqtrrd φ0A-BihC2CihC+2
192 18 42 191 prodge0ld φ0A-BihC2
193 17 le0neg1d φA-BihC200A-BihC2
194 192 193 mpbird φA-BihC20
195 15 sqge0d φ0A-BihC2
196 0re 0
197 letri3 A-BihC20A-BihC2=0A-BihC200A-BihC2
198 17 196 197 sylancl φA-BihC2=0A-BihC200A-BihC2
199 194 195 198 mpbir2and φA-BihC2=0
200 16 199 sqeq0d φA-BihC=0
201 14 200 abs00d φA-BihC=0