Metamath Proof Explorer


Theorem rpge0d

Description: A positive real is greater than or equal to zero. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis rpred.1 φA+
Assertion rpge0d φ0A

Proof

Step Hyp Ref Expression
1 rpred.1 φA+
2 rpge0 A+0A
3 1 2 syl φ0A