Metamath Proof Explorer


Theorem hiidge0

Description: Inner product with self is not negative. (Contributed by NM, 29-May-1999) (New usage is discouraged.)

Ref Expression
Assertion hiidge0 A0AihA

Proof

Step Hyp Ref Expression
1 pm2.1 ¬A=0A=0
2 df-ne A0¬A=0
3 ax-his4 AA00<AihA
4 2 3 sylan2br A¬A=00<AihA
5 4 ex A¬A=00<AihA
6 oveq1 A=0AihA=0ihA
7 hi01 A0ihA=0
8 6 7 sylan9eqr AA=0AihA=0
9 8 eqcomd AA=00=AihA
10 9 ex AA=00=AihA
11 5 10 orim12d A¬A=0A=00<AihA0=AihA
12 1 11 mpi A0<AihA0=AihA
13 0re 0
14 hiidrcl AAihA
15 leloe 0AihA0AihA0<AihA0=AihA
16 13 14 15 sylancr A0AihA0<AihA0=AihA
17 12 16 mpbird A0AihA