Metamath Proof Explorer


Theorem hi01

Description: Inner product with the 0 vector. (Contributed by NM, 29-May-1999) (New usage is discouraged.)

Ref Expression
Assertion hi01 A0ihA=0

Proof

Step Hyp Ref Expression
1 ax-hv0cl 0
2 ax-hvmul0 000=0
3 1 2 ax-mp 00=0
4 3 oveq1i 00ihA=0ihA
5 0cn 0
6 ax-his3 00A00ihA=00ihA
7 5 1 6 mp3an12 A00ihA=00ihA
8 4 7 eqtr3id A0ihA=00ihA
9 hicl 0A0ihA
10 1 9 mpan A0ihA
11 10 mul02d A00ihA=0
12 8 11 eqtrd A0ihA=0