Metamath Proof Explorer


Theorem his2sub

Description: Distributive law for inner product of vector subtraction. (Contributed by NM, 16-Nov-1999) (New usage is discouraged.)

Ref Expression
Assertion his2sub ABCA-BihC=AihCBihC

Proof

Step Hyp Ref Expression
1 hvsubval ABA-B=A+-1B
2 1 oveq1d ABA-BihC=A+-1BihC
3 2 3adant3 ABCA-BihC=A+-1BihC
4 neg1cn 1
5 hvmulcl 1B-1B
6 4 5 mpan B-1B
7 ax-his2 A-1BCA+-1BihC=AihC+-1BihC
8 6 7 syl3an2 ABCA+-1BihC=AihC+-1BihC
9 ax-his3 1BC-1BihC=-1BihC
10 4 9 mp3an1 BC-1BihC=-1BihC
11 hicl BCBihC
12 11 mulm1d BC-1BihC=BihC
13 10 12 eqtrd BC-1BihC=BihC
14 13 oveq2d BCAihC+-1BihC=AihC+BihC
15 14 3adant1 ABCAihC+-1BihC=AihC+BihC
16 8 15 eqtrd ABCA+-1BihC=AihC+BihC
17 hicl ACAihC
18 17 3adant2 ABCAihC
19 11 3adant1 ABCBihC
20 18 19 negsubd ABCAihC+BihC=AihCBihC
21 3 16 20 3eqtrd ABCA-BihC=AihCBihC