| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hvsubval |
|- ( ( A e. ~H /\ B e. ~H ) -> ( A -h B ) = ( A +h ( -u 1 .h B ) ) ) |
| 2 |
1
|
oveq1d |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( A -h B ) .ih C ) = ( ( A +h ( -u 1 .h B ) ) .ih C ) ) |
| 3 |
2
|
3adant3 |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A -h B ) .ih C ) = ( ( A +h ( -u 1 .h B ) ) .ih C ) ) |
| 4 |
|
neg1cn |
|- -u 1 e. CC |
| 5 |
|
hvmulcl |
|- ( ( -u 1 e. CC /\ B e. ~H ) -> ( -u 1 .h B ) e. ~H ) |
| 6 |
4 5
|
mpan |
|- ( B e. ~H -> ( -u 1 .h B ) e. ~H ) |
| 7 |
|
ax-his2 |
|- ( ( A e. ~H /\ ( -u 1 .h B ) e. ~H /\ C e. ~H ) -> ( ( A +h ( -u 1 .h B ) ) .ih C ) = ( ( A .ih C ) + ( ( -u 1 .h B ) .ih C ) ) ) |
| 8 |
6 7
|
syl3an2 |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h ( -u 1 .h B ) ) .ih C ) = ( ( A .ih C ) + ( ( -u 1 .h B ) .ih C ) ) ) |
| 9 |
|
ax-his3 |
|- ( ( -u 1 e. CC /\ B e. ~H /\ C e. ~H ) -> ( ( -u 1 .h B ) .ih C ) = ( -u 1 x. ( B .ih C ) ) ) |
| 10 |
4 9
|
mp3an1 |
|- ( ( B e. ~H /\ C e. ~H ) -> ( ( -u 1 .h B ) .ih C ) = ( -u 1 x. ( B .ih C ) ) ) |
| 11 |
|
hicl |
|- ( ( B e. ~H /\ C e. ~H ) -> ( B .ih C ) e. CC ) |
| 12 |
11
|
mulm1d |
|- ( ( B e. ~H /\ C e. ~H ) -> ( -u 1 x. ( B .ih C ) ) = -u ( B .ih C ) ) |
| 13 |
10 12
|
eqtrd |
|- ( ( B e. ~H /\ C e. ~H ) -> ( ( -u 1 .h B ) .ih C ) = -u ( B .ih C ) ) |
| 14 |
13
|
oveq2d |
|- ( ( B e. ~H /\ C e. ~H ) -> ( ( A .ih C ) + ( ( -u 1 .h B ) .ih C ) ) = ( ( A .ih C ) + -u ( B .ih C ) ) ) |
| 15 |
14
|
3adant1 |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A .ih C ) + ( ( -u 1 .h B ) .ih C ) ) = ( ( A .ih C ) + -u ( B .ih C ) ) ) |
| 16 |
8 15
|
eqtrd |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h ( -u 1 .h B ) ) .ih C ) = ( ( A .ih C ) + -u ( B .ih C ) ) ) |
| 17 |
|
hicl |
|- ( ( A e. ~H /\ C e. ~H ) -> ( A .ih C ) e. CC ) |
| 18 |
17
|
3adant2 |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A .ih C ) e. CC ) |
| 19 |
11
|
3adant1 |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( B .ih C ) e. CC ) |
| 20 |
18 19
|
negsubd |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A .ih C ) + -u ( B .ih C ) ) = ( ( A .ih C ) - ( B .ih C ) ) ) |
| 21 |
3 16 20
|
3eqtrd |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A -h B ) .ih C ) = ( ( A .ih C ) - ( B .ih C ) ) ) |