Metamath Proof Explorer


Theorem his35

Description: Move scalar multiplication to outside of inner product. (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Assertion his35 ABCDACihBD=ABCihD

Proof

Step Hyp Ref Expression
1 his5 BCDCihBD=BCihD
2 1 3expb BCDCihBD=BCihD
3 2 adantll ABCDCihBD=BCihD
4 3 oveq2d ABCDACihBD=ABCihD
5 simpll ABCDA
6 simprl ABCDC
7 hvmulcl BDBD
8 7 ad2ant2l ABCDBD
9 ax-his3 ACBDACihBD=ACihBD
10 5 6 8 9 syl3anc ABCDACihBD=ACihBD
11 cjcl BB
12 11 ad2antlr ABCDB
13 hicl CDCihD
14 13 adantl ABCDCihD
15 5 12 14 mulassd ABCDABCihD=ABCihD
16 4 10 15 3eqtr4d ABCDACihBD=ABCihD