Metamath Proof Explorer


Theorem prodge0ld

Description: Infer that a multiplier is nonnegative from a positive multiplicand and nonnegative product. (Contributed by NM, 2-Jul-2005) (Revised by AV, 9-Jul-2022)

Ref Expression
Hypotheses prodge0ld.1 φA
prodge0ld.2 φB+
prodge0ld.3 φ0AB
Assertion prodge0ld φ0A

Proof

Step Hyp Ref Expression
1 prodge0ld.1 φA
2 prodge0ld.2 φB+
3 prodge0ld.3 φ0AB
4 2 rpcnd φB
5 1 recnd φA
6 4 5 mulcomd φBA=AB
7 3 6 breqtrrd φ0BA
8 2 1 7 prodge0rd φ0A