Description: Infer that a multiplier is nonnegative from a positive multiplicand and nonnegative product. (Contributed by NM, 2-Jul-2005) (Revised by AV, 9-Jul-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prodge0ld.1 | |- ( ph -> A e. RR ) |
|
prodge0ld.2 | |- ( ph -> B e. RR+ ) |
||
prodge0ld.3 | |- ( ph -> 0 <_ ( A x. B ) ) |
||
Assertion | prodge0ld | |- ( ph -> 0 <_ A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodge0ld.1 | |- ( ph -> A e. RR ) |
|
2 | prodge0ld.2 | |- ( ph -> B e. RR+ ) |
|
3 | prodge0ld.3 | |- ( ph -> 0 <_ ( A x. B ) ) |
|
4 | 2 | rpcnd | |- ( ph -> B e. CC ) |
5 | 1 | recnd | |- ( ph -> A e. CC ) |
6 | 4 5 | mulcomd | |- ( ph -> ( B x. A ) = ( A x. B ) ) |
7 | 3 6 | breqtrrd | |- ( ph -> 0 <_ ( B x. A ) ) |
8 | 2 1 7 | prodge0rd | |- ( ph -> 0 <_ A ) |