Metamath Proof Explorer


Theorem prodge0ld

Description: Infer that a multiplier is nonnegative from a positive multiplicand and nonnegative product. (Contributed by NM, 2-Jul-2005) (Revised by AV, 9-Jul-2022)

Ref Expression
Hypotheses prodge0ld.1
|- ( ph -> A e. RR )
prodge0ld.2
|- ( ph -> B e. RR+ )
prodge0ld.3
|- ( ph -> 0 <_ ( A x. B ) )
Assertion prodge0ld
|- ( ph -> 0 <_ A )

Proof

Step Hyp Ref Expression
1 prodge0ld.1
 |-  ( ph -> A e. RR )
2 prodge0ld.2
 |-  ( ph -> B e. RR+ )
3 prodge0ld.3
 |-  ( ph -> 0 <_ ( A x. B ) )
4 2 rpcnd
 |-  ( ph -> B e. CC )
5 1 recnd
 |-  ( ph -> A e. CC )
6 4 5 mulcomd
 |-  ( ph -> ( B x. A ) = ( A x. B ) )
7 3 6 breqtrrd
 |-  ( ph -> 0 <_ ( B x. A ) )
8 2 1 7 prodge0rd
 |-  ( ph -> 0 <_ A )