Description: Swap denominator with other side of 'less than'. (Contributed by Mario Carneiro, 28-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ltdiv23d.1 | |- ( ph -> A e. RR ) |
|
ltdiv23d.2 | |- ( ph -> B e. RR+ ) |
||
ltdiv23d.3 | |- ( ph -> C e. RR+ ) |
||
ltdiv23d.4 | |- ( ph -> ( A / B ) < C ) |
||
Assertion | ltdiv23d | |- ( ph -> ( A / C ) < B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltdiv23d.1 | |- ( ph -> A e. RR ) |
|
2 | ltdiv23d.2 | |- ( ph -> B e. RR+ ) |
|
3 | ltdiv23d.3 | |- ( ph -> C e. RR+ ) |
|
4 | ltdiv23d.4 | |- ( ph -> ( A / B ) < C ) |
|
5 | 2 | rpregt0d | |- ( ph -> ( B e. RR /\ 0 < B ) ) |
6 | 3 | rpregt0d | |- ( ph -> ( C e. RR /\ 0 < C ) ) |
7 | ltdiv23 | |- ( ( A e. RR /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> ( ( A / B ) < C <-> ( A / C ) < B ) ) |
|
8 | 1 5 6 7 | syl3anc | |- ( ph -> ( ( A / B ) < C <-> ( A / C ) < B ) ) |
9 | 4 8 | mpbid | |- ( ph -> ( A / C ) < B ) |