Metamath Proof Explorer


Theorem ltdiv23d

Description: Swap denominator with other side of 'less than'. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses ltdiv23d.1 φA
ltdiv23d.2 φB+
ltdiv23d.3 φC+
ltdiv23d.4 φAB<C
Assertion ltdiv23d φAC<B

Proof

Step Hyp Ref Expression
1 ltdiv23d.1 φA
2 ltdiv23d.2 φB+
3 ltdiv23d.3 φC+
4 ltdiv23d.4 φAB<C
5 2 rpregt0d φB0<B
6 3 rpregt0d φC0<C
7 ltdiv23 AB0<BC0<CAB<CAC<B
8 1 5 6 7 syl3anc φAB<CAC<B
9 4 8 mpbid φAC<B