Metamath Proof Explorer


Theorem sqeq0d

Description: A number is zero iff its square is zero. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 φA
sqeq0d.1 φA2=0
Assertion sqeq0d φA=0

Proof

Step Hyp Ref Expression
1 expcld.1 φA
2 sqeq0d.1 φA2=0
3 2nn 2
4 3 a1i φ2
5 1 4 2 expeq0d φA=0