Metamath Proof Explorer


Theorem expcld

Description: Closure law for nonnegative integer exponentiation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 φA
expcld.2 φN0
Assertion expcld φAN

Proof

Step Hyp Ref Expression
1 expcld.1 φA
2 expcld.2 φN0
3 expcl AN0AN
4 1 2 3 syl2anc φAN