Metamath Proof Explorer


Theorem ge0p1rpd

Description: A nonnegative number plus one is a positive number. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpgecld.1 φA
ge0p1rp.2 φ0A
Assertion ge0p1rpd φA+1+

Proof

Step Hyp Ref Expression
1 rpgecld.1 φA
2 ge0p1rp.2 φ0A
3 ge0p1rp A0AA+1+
4 1 2 3 syl2anc φA+1+