Metamath Proof Explorer


Theorem hlatcon3

Description: Atom exchange combined with contraposition. (Contributed by NM, 13-Jun-2012)

Ref Expression
Hypotheses 3noncol.l ˙=K
3noncol.j ˙=joinK
3noncol.a A=AtomsK
Assertion hlatcon3 KHLPAQARAPQ¬R˙P˙Q¬P˙Q˙R

Proof

Step Hyp Ref Expression
1 3noncol.l ˙=K
2 3noncol.j ˙=joinK
3 3noncol.a A=AtomsK
4 1 2 3 3noncolr2 KHLPAQARAPQ¬R˙P˙QQR¬P˙Q˙R
5 4 simprd KHLPAQARAPQ¬R˙P˙Q¬P˙Q˙R