Metamath Proof Explorer


Theorem hlatexchb2

Description: A version of hlexchb2 for atoms. (Contributed by NM, 7-Feb-2012)

Ref Expression
Hypotheses hlatexchb.l ˙=K
hlatexchb.j ˙=joinK
hlatexchb.a A=AtomsK
Assertion hlatexchb2 KHLPAQARAPRP˙Q˙RP˙R=Q˙R

Proof

Step Hyp Ref Expression
1 hlatexchb.l ˙=K
2 hlatexchb.j ˙=joinK
3 hlatexchb.a A=AtomsK
4 hlcvl KHLKCvLat
5 1 2 3 cvlatexchb2 KCvLatPAQARAPRP˙Q˙RP˙R=Q˙R
6 4 5 syl3an1 KHLPAQARAPRP˙Q˙RP˙R=Q˙R