Metamath Proof Explorer


Theorem hlomcmcv

Description: A Hilbert lattice is orthomodular, complete, and has the covering (exchange) property. (Contributed by NM, 5-Nov-2012)

Ref Expression
Assertion hlomcmcv KHLKOMLKCLatKCvLat

Proof

Step Hyp Ref Expression
1 eqid BaseK=BaseK
2 eqid K=K
3 eqid <K=<K
4 eqid joinK=joinK
5 eqid 0.K=0.K
6 eqid 1.K=1.K
7 eqid AtomsK=AtomsK
8 1 2 3 4 5 6 7 ishlat1 KHLKOMLKCLatKCvLatxAtomsKyAtomsKxyzAtomsKzxzyzKxjoinKyxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.K
9 8 simplbi KHLKOMLKCLatKCvLat