Metamath Proof Explorer


Theorem hlress

Description: The scalar field of a subcomplex Hilbert space contains RR . (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses hlress.f F=ScalarW
hlress.k K=BaseF
Assertion hlress WℂHilK

Proof

Step Hyp Ref Expression
1 hlress.f F=ScalarW
2 hlress.k K=BaseF
3 1 2 hlprlem WℂHilKSubRingfldfld𝑠KDivRingfld𝑠KCMetSp
4 eqid fld𝑠K=fld𝑠K
5 4 resscdrg KSubRingfldfld𝑠KDivRingfld𝑠KCMetSpK
6 3 5 syl WℂHilK