Description: The real numbers are a subset of any complete subfield in the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | resscdrg.1 | |
|
Assertion | resscdrg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resscdrg.1 | |
|
2 | eqid | |
|
3 | 2 | cnfldtop | |
4 | ax-resscn | |
|
5 | qssre | |
|
6 | unicntop | |
|
7 | 2 | tgioo2 | |
8 | 6 7 | restcls | |
9 | 3 4 5 8 | mp3an | |
10 | qdensere | |
|
11 | 9 10 | eqtr3i | |
12 | sseqin2 | |
|
13 | 11 12 | mpbir | |
14 | simp3 | |
|
15 | cncms | |
|
16 | cnfldbas | |
|
17 | 16 | subrgss | |
18 | 17 | 3ad2ant1 | |
19 | 1 16 2 | cmsss | |
20 | 15 18 19 | sylancr | |
21 | 14 20 | mpbid | |
22 | 1 | eleq1i | |
23 | qsssubdrg | |
|
24 | 22 23 | sylan2b | |
25 | 24 | 3adant3 | |
26 | 6 | clsss2 | |
27 | 21 25 26 | syl2anc | |
28 | 13 27 | sstrid | |