Metamath Proof Explorer


Theorem resscdrg

Description: The real numbers are a subset of any complete subfield in the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypothesis resscdrg.1 F=fld𝑠K
Assertion resscdrg KSubRingfldFDivRingFCMetSpK

Proof

Step Hyp Ref Expression
1 resscdrg.1 F=fld𝑠K
2 eqid TopOpenfld=TopOpenfld
3 2 cnfldtop TopOpenfldTop
4 ax-resscn
5 qssre
6 unicntop =TopOpenfld
7 2 tgioo2 topGenran.=TopOpenfld𝑡
8 6 7 restcls TopOpenfldTopclstopGenran.=clsTopOpenfld
9 3 4 5 8 mp3an clstopGenran.=clsTopOpenfld
10 qdensere clstopGenran.=
11 9 10 eqtr3i clsTopOpenfld=
12 sseqin2 clsTopOpenfldclsTopOpenfld=
13 11 12 mpbir clsTopOpenfld
14 simp3 KSubRingfldFDivRingFCMetSpFCMetSp
15 cncms fldCMetSp
16 cnfldbas =Basefld
17 16 subrgss KSubRingfldK
18 17 3ad2ant1 KSubRingfldFDivRingFCMetSpK
19 1 16 2 cmsss fldCMetSpKFCMetSpKClsdTopOpenfld
20 15 18 19 sylancr KSubRingfldFDivRingFCMetSpFCMetSpKClsdTopOpenfld
21 14 20 mpbid KSubRingfldFDivRingFCMetSpKClsdTopOpenfld
22 1 eleq1i FDivRingfld𝑠KDivRing
23 qsssubdrg KSubRingfldfld𝑠KDivRingK
24 22 23 sylan2b KSubRingfldFDivRingK
25 24 3adant3 KSubRingfldFDivRingFCMetSpK
26 6 clsss2 KClsdTopOpenfldKclsTopOpenfldK
27 21 25 26 syl2anc KSubRingfldFDivRingFCMetSpclsTopOpenfldK
28 13 27 sstrid KSubRingfldFDivRingFCMetSpK