| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resscdrg.1 |  |-  F = ( CCfld |`s K ) | 
						
							| 2 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 3 | 2 | cnfldtop |  |-  ( TopOpen ` CCfld ) e. Top | 
						
							| 4 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 5 |  | qssre |  |-  QQ C_ RR | 
						
							| 6 |  | unicntop |  |-  CC = U. ( TopOpen ` CCfld ) | 
						
							| 7 |  | tgioo4 |  |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 8 | 6 7 | restcls |  |-  ( ( ( TopOpen ` CCfld ) e. Top /\ RR C_ CC /\ QQ C_ RR ) -> ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) = ( ( ( cls ` ( TopOpen ` CCfld ) ) ` QQ ) i^i RR ) ) | 
						
							| 9 | 3 4 5 8 | mp3an |  |-  ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) = ( ( ( cls ` ( TopOpen ` CCfld ) ) ` QQ ) i^i RR ) | 
						
							| 10 |  | qdensere |  |-  ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) = RR | 
						
							| 11 | 9 10 | eqtr3i |  |-  ( ( ( cls ` ( TopOpen ` CCfld ) ) ` QQ ) i^i RR ) = RR | 
						
							| 12 |  | sseqin2 |  |-  ( RR C_ ( ( cls ` ( TopOpen ` CCfld ) ) ` QQ ) <-> ( ( ( cls ` ( TopOpen ` CCfld ) ) ` QQ ) i^i RR ) = RR ) | 
						
							| 13 | 11 12 | mpbir |  |-  RR C_ ( ( cls ` ( TopOpen ` CCfld ) ) ` QQ ) | 
						
							| 14 |  | simp3 |  |-  ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> F e. CMetSp ) | 
						
							| 15 |  | cncms |  |-  CCfld e. CMetSp | 
						
							| 16 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 17 | 16 | subrgss |  |-  ( K e. ( SubRing ` CCfld ) -> K C_ CC ) | 
						
							| 18 | 17 | 3ad2ant1 |  |-  ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> K C_ CC ) | 
						
							| 19 | 1 16 2 | cmsss |  |-  ( ( CCfld e. CMetSp /\ K C_ CC ) -> ( F e. CMetSp <-> K e. ( Clsd ` ( TopOpen ` CCfld ) ) ) ) | 
						
							| 20 | 15 18 19 | sylancr |  |-  ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> ( F e. CMetSp <-> K e. ( Clsd ` ( TopOpen ` CCfld ) ) ) ) | 
						
							| 21 | 14 20 | mpbid |  |-  ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> K e. ( Clsd ` ( TopOpen ` CCfld ) ) ) | 
						
							| 22 | 1 | eleq1i |  |-  ( F e. DivRing <-> ( CCfld |`s K ) e. DivRing ) | 
						
							| 23 |  | qsssubdrg |  |-  ( ( K e. ( SubRing ` CCfld ) /\ ( CCfld |`s K ) e. DivRing ) -> QQ C_ K ) | 
						
							| 24 | 22 23 | sylan2b |  |-  ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing ) -> QQ C_ K ) | 
						
							| 25 | 24 | 3adant3 |  |-  ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> QQ C_ K ) | 
						
							| 26 | 6 | clsss2 |  |-  ( ( K e. ( Clsd ` ( TopOpen ` CCfld ) ) /\ QQ C_ K ) -> ( ( cls ` ( TopOpen ` CCfld ) ) ` QQ ) C_ K ) | 
						
							| 27 | 21 25 26 | syl2anc |  |-  ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> ( ( cls ` ( TopOpen ` CCfld ) ) ` QQ ) C_ K ) | 
						
							| 28 | 13 27 | sstrid |  |-  ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> RR C_ K ) |