Description: The only complete subfields of the complex numbers are RR and CC . (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | resscdrg.1 | |- F = ( CCfld |`s K ) | |
| Assertion | cncdrg | |- ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> K e. { RR , CC } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | resscdrg.1 | |- F = ( CCfld |`s K ) | |
| 2 | simp1 | |- ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> K e. ( SubRing ` CCfld ) ) | |
| 3 | 1 | resscdrg | |- ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> RR C_ K ) | 
| 4 | cnsubrg |  |-  ( ( K e. ( SubRing ` CCfld ) /\ RR C_ K ) -> K e. { RR , CC } ) | |
| 5 | 2 3 4 | syl2anc |  |-  ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> K e. { RR , CC } ) |