| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssdif0 |
|- ( R C_ RR <-> ( R \ RR ) = (/) ) |
| 2 |
|
simpr |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ R C_ RR ) -> R C_ RR ) |
| 3 |
|
simplr |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ R C_ RR ) -> RR C_ R ) |
| 4 |
2 3
|
eqssd |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ R C_ RR ) -> R = RR ) |
| 5 |
4
|
orcd |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ R C_ RR ) -> ( R = RR \/ R = CC ) ) |
| 6 |
1 5
|
sylan2br |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( R \ RR ) = (/) ) -> ( R = RR \/ R = CC ) ) |
| 7 |
|
n0 |
|- ( ( R \ RR ) =/= (/) <-> E. x x e. ( R \ RR ) ) |
| 8 |
|
simpll |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> R e. ( SubRing ` CCfld ) ) |
| 9 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 10 |
9
|
subrgss |
|- ( R e. ( SubRing ` CCfld ) -> R C_ CC ) |
| 11 |
8 10
|
syl |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> R C_ CC ) |
| 12 |
|
replim |
|- ( y e. CC -> y = ( ( Re ` y ) + ( _i x. ( Im ` y ) ) ) ) |
| 13 |
12
|
ad2antll |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> y = ( ( Re ` y ) + ( _i x. ( Im ` y ) ) ) ) |
| 14 |
|
simpll |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> R e. ( SubRing ` CCfld ) ) |
| 15 |
|
simplr |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> RR C_ R ) |
| 16 |
|
recl |
|- ( y e. CC -> ( Re ` y ) e. RR ) |
| 17 |
16
|
ad2antll |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> ( Re ` y ) e. RR ) |
| 18 |
15 17
|
sseldd |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> ( Re ` y ) e. R ) |
| 19 |
|
ax-icn |
|- _i e. CC |
| 20 |
19
|
a1i |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> _i e. CC ) |
| 21 |
|
eldifi |
|- ( x e. ( R \ RR ) -> x e. R ) |
| 22 |
21
|
adantl |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> x e. R ) |
| 23 |
11 22
|
sseldd |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> x e. CC ) |
| 24 |
|
imcl |
|- ( x e. CC -> ( Im ` x ) e. RR ) |
| 25 |
23 24
|
syl |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( Im ` x ) e. RR ) |
| 26 |
25
|
recnd |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( Im ` x ) e. CC ) |
| 27 |
|
eldifn |
|- ( x e. ( R \ RR ) -> -. x e. RR ) |
| 28 |
27
|
adantl |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> -. x e. RR ) |
| 29 |
|
reim0b |
|- ( x e. CC -> ( x e. RR <-> ( Im ` x ) = 0 ) ) |
| 30 |
29
|
necon3bbid |
|- ( x e. CC -> ( -. x e. RR <-> ( Im ` x ) =/= 0 ) ) |
| 31 |
23 30
|
syl |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( -. x e. RR <-> ( Im ` x ) =/= 0 ) ) |
| 32 |
28 31
|
mpbid |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( Im ` x ) =/= 0 ) |
| 33 |
20 26 32
|
divcan4d |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( ( _i x. ( Im ` x ) ) / ( Im ` x ) ) = _i ) |
| 34 |
|
mulcl |
|- ( ( _i e. CC /\ ( Im ` x ) e. CC ) -> ( _i x. ( Im ` x ) ) e. CC ) |
| 35 |
19 26 34
|
sylancr |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( _i x. ( Im ` x ) ) e. CC ) |
| 36 |
35 26 32
|
divrecd |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( ( _i x. ( Im ` x ) ) / ( Im ` x ) ) = ( ( _i x. ( Im ` x ) ) x. ( 1 / ( Im ` x ) ) ) ) |
| 37 |
33 36
|
eqtr3d |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> _i = ( ( _i x. ( Im ` x ) ) x. ( 1 / ( Im ` x ) ) ) ) |
| 38 |
23
|
recld |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( Re ` x ) e. RR ) |
| 39 |
38
|
recnd |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( Re ` x ) e. CC ) |
| 40 |
23 39
|
negsubd |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( x + -u ( Re ` x ) ) = ( x - ( Re ` x ) ) ) |
| 41 |
|
replim |
|- ( x e. CC -> x = ( ( Re ` x ) + ( _i x. ( Im ` x ) ) ) ) |
| 42 |
23 41
|
syl |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> x = ( ( Re ` x ) + ( _i x. ( Im ` x ) ) ) ) |
| 43 |
42
|
oveq1d |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( x - ( Re ` x ) ) = ( ( ( Re ` x ) + ( _i x. ( Im ` x ) ) ) - ( Re ` x ) ) ) |
| 44 |
39 35
|
pncan2d |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( ( ( Re ` x ) + ( _i x. ( Im ` x ) ) ) - ( Re ` x ) ) = ( _i x. ( Im ` x ) ) ) |
| 45 |
40 43 44
|
3eqtrd |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( x + -u ( Re ` x ) ) = ( _i x. ( Im ` x ) ) ) |
| 46 |
|
simplr |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> RR C_ R ) |
| 47 |
38
|
renegcld |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> -u ( Re ` x ) e. RR ) |
| 48 |
46 47
|
sseldd |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> -u ( Re ` x ) e. R ) |
| 49 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
| 50 |
49
|
subrgacl |
|- ( ( R e. ( SubRing ` CCfld ) /\ x e. R /\ -u ( Re ` x ) e. R ) -> ( x + -u ( Re ` x ) ) e. R ) |
| 51 |
8 22 48 50
|
syl3anc |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( x + -u ( Re ` x ) ) e. R ) |
| 52 |
45 51
|
eqeltrrd |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( _i x. ( Im ` x ) ) e. R ) |
| 53 |
25 32
|
rereccld |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( 1 / ( Im ` x ) ) e. RR ) |
| 54 |
46 53
|
sseldd |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( 1 / ( Im ` x ) ) e. R ) |
| 55 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
| 56 |
55
|
subrgmcl |
|- ( ( R e. ( SubRing ` CCfld ) /\ ( _i x. ( Im ` x ) ) e. R /\ ( 1 / ( Im ` x ) ) e. R ) -> ( ( _i x. ( Im ` x ) ) x. ( 1 / ( Im ` x ) ) ) e. R ) |
| 57 |
8 52 54 56
|
syl3anc |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( ( _i x. ( Im ` x ) ) x. ( 1 / ( Im ` x ) ) ) e. R ) |
| 58 |
37 57
|
eqeltrd |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> _i e. R ) |
| 59 |
58
|
adantrr |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> _i e. R ) |
| 60 |
|
imcl |
|- ( y e. CC -> ( Im ` y ) e. RR ) |
| 61 |
60
|
ad2antll |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> ( Im ` y ) e. RR ) |
| 62 |
15 61
|
sseldd |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> ( Im ` y ) e. R ) |
| 63 |
55
|
subrgmcl |
|- ( ( R e. ( SubRing ` CCfld ) /\ _i e. R /\ ( Im ` y ) e. R ) -> ( _i x. ( Im ` y ) ) e. R ) |
| 64 |
14 59 62 63
|
syl3anc |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> ( _i x. ( Im ` y ) ) e. R ) |
| 65 |
49
|
subrgacl |
|- ( ( R e. ( SubRing ` CCfld ) /\ ( Re ` y ) e. R /\ ( _i x. ( Im ` y ) ) e. R ) -> ( ( Re ` y ) + ( _i x. ( Im ` y ) ) ) e. R ) |
| 66 |
14 18 64 65
|
syl3anc |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> ( ( Re ` y ) + ( _i x. ( Im ` y ) ) ) e. R ) |
| 67 |
13 66
|
eqeltrd |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> y e. R ) |
| 68 |
67
|
expr |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( y e. CC -> y e. R ) ) |
| 69 |
68
|
ssrdv |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> CC C_ R ) |
| 70 |
11 69
|
eqssd |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> R = CC ) |
| 71 |
70
|
olcd |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( R = RR \/ R = CC ) ) |
| 72 |
71
|
ex |
|- ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) -> ( x e. ( R \ RR ) -> ( R = RR \/ R = CC ) ) ) |
| 73 |
72
|
exlimdv |
|- ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) -> ( E. x x e. ( R \ RR ) -> ( R = RR \/ R = CC ) ) ) |
| 74 |
73
|
imp |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ E. x x e. ( R \ RR ) ) -> ( R = RR \/ R = CC ) ) |
| 75 |
7 74
|
sylan2b |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( R \ RR ) =/= (/) ) -> ( R = RR \/ R = CC ) ) |
| 76 |
6 75
|
pm2.61dane |
|- ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) -> ( R = RR \/ R = CC ) ) |
| 77 |
|
elprg |
|- ( R e. ( SubRing ` CCfld ) -> ( R e. { RR , CC } <-> ( R = RR \/ R = CC ) ) ) |
| 78 |
77
|
adantr |
|- ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) -> ( R e. { RR , CC } <-> ( R = RR \/ R = CC ) ) ) |
| 79 |
76 78
|
mpbird |
|- ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) -> R e. { RR , CC } ) |