| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssdif0 |
⊢ ( 𝑅 ⊆ ℝ ↔ ( 𝑅 ∖ ℝ ) = ∅ ) |
| 2 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑅 ⊆ ℝ ) → 𝑅 ⊆ ℝ ) |
| 3 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑅 ⊆ ℝ ) → ℝ ⊆ 𝑅 ) |
| 4 |
2 3
|
eqssd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑅 ⊆ ℝ ) → 𝑅 = ℝ ) |
| 5 |
4
|
orcd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑅 ⊆ ℝ ) → ( 𝑅 = ℝ ∨ 𝑅 = ℂ ) ) |
| 6 |
1 5
|
sylan2br |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑅 ∖ ℝ ) = ∅ ) → ( 𝑅 = ℝ ∨ 𝑅 = ℂ ) ) |
| 7 |
|
n0 |
⊢ ( ( 𝑅 ∖ ℝ ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) |
| 8 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → 𝑅 ∈ ( SubRing ‘ ℂfld ) ) |
| 9 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 10 |
9
|
subrgss |
⊢ ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → 𝑅 ⊆ ℂ ) |
| 11 |
8 10
|
syl |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → 𝑅 ⊆ ℂ ) |
| 12 |
|
replim |
⊢ ( 𝑦 ∈ ℂ → 𝑦 = ( ( ℜ ‘ 𝑦 ) + ( i · ( ℑ ‘ 𝑦 ) ) ) ) |
| 13 |
12
|
ad2antll |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → 𝑦 = ( ( ℜ ‘ 𝑦 ) + ( i · ( ℑ ‘ 𝑦 ) ) ) ) |
| 14 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → 𝑅 ∈ ( SubRing ‘ ℂfld ) ) |
| 15 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → ℝ ⊆ 𝑅 ) |
| 16 |
|
recl |
⊢ ( 𝑦 ∈ ℂ → ( ℜ ‘ 𝑦 ) ∈ ℝ ) |
| 17 |
16
|
ad2antll |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → ( ℜ ‘ 𝑦 ) ∈ ℝ ) |
| 18 |
15 17
|
sseldd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → ( ℜ ‘ 𝑦 ) ∈ 𝑅 ) |
| 19 |
|
ax-icn |
⊢ i ∈ ℂ |
| 20 |
19
|
a1i |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → i ∈ ℂ ) |
| 21 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) → 𝑥 ∈ 𝑅 ) |
| 22 |
21
|
adantl |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → 𝑥 ∈ 𝑅 ) |
| 23 |
11 22
|
sseldd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → 𝑥 ∈ ℂ ) |
| 24 |
|
imcl |
⊢ ( 𝑥 ∈ ℂ → ( ℑ ‘ 𝑥 ) ∈ ℝ ) |
| 25 |
23 24
|
syl |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( ℑ ‘ 𝑥 ) ∈ ℝ ) |
| 26 |
25
|
recnd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( ℑ ‘ 𝑥 ) ∈ ℂ ) |
| 27 |
|
eldifn |
⊢ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) → ¬ 𝑥 ∈ ℝ ) |
| 28 |
27
|
adantl |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ¬ 𝑥 ∈ ℝ ) |
| 29 |
|
reim0b |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ∈ ℝ ↔ ( ℑ ‘ 𝑥 ) = 0 ) ) |
| 30 |
29
|
necon3bbid |
⊢ ( 𝑥 ∈ ℂ → ( ¬ 𝑥 ∈ ℝ ↔ ( ℑ ‘ 𝑥 ) ≠ 0 ) ) |
| 31 |
23 30
|
syl |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( ¬ 𝑥 ∈ ℝ ↔ ( ℑ ‘ 𝑥 ) ≠ 0 ) ) |
| 32 |
28 31
|
mpbid |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( ℑ ‘ 𝑥 ) ≠ 0 ) |
| 33 |
20 26 32
|
divcan4d |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( ( i · ( ℑ ‘ 𝑥 ) ) / ( ℑ ‘ 𝑥 ) ) = i ) |
| 34 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝑥 ) ) ∈ ℂ ) |
| 35 |
19 26 34
|
sylancr |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( i · ( ℑ ‘ 𝑥 ) ) ∈ ℂ ) |
| 36 |
35 26 32
|
divrecd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( ( i · ( ℑ ‘ 𝑥 ) ) / ( ℑ ‘ 𝑥 ) ) = ( ( i · ( ℑ ‘ 𝑥 ) ) · ( 1 / ( ℑ ‘ 𝑥 ) ) ) ) |
| 37 |
33 36
|
eqtr3d |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → i = ( ( i · ( ℑ ‘ 𝑥 ) ) · ( 1 / ( ℑ ‘ 𝑥 ) ) ) ) |
| 38 |
23
|
recld |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( ℜ ‘ 𝑥 ) ∈ ℝ ) |
| 39 |
38
|
recnd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( ℜ ‘ 𝑥 ) ∈ ℂ ) |
| 40 |
23 39
|
negsubd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( 𝑥 + - ( ℜ ‘ 𝑥 ) ) = ( 𝑥 − ( ℜ ‘ 𝑥 ) ) ) |
| 41 |
|
replim |
⊢ ( 𝑥 ∈ ℂ → 𝑥 = ( ( ℜ ‘ 𝑥 ) + ( i · ( ℑ ‘ 𝑥 ) ) ) ) |
| 42 |
23 41
|
syl |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → 𝑥 = ( ( ℜ ‘ 𝑥 ) + ( i · ( ℑ ‘ 𝑥 ) ) ) ) |
| 43 |
42
|
oveq1d |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( 𝑥 − ( ℜ ‘ 𝑥 ) ) = ( ( ( ℜ ‘ 𝑥 ) + ( i · ( ℑ ‘ 𝑥 ) ) ) − ( ℜ ‘ 𝑥 ) ) ) |
| 44 |
39 35
|
pncan2d |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( ( ( ℜ ‘ 𝑥 ) + ( i · ( ℑ ‘ 𝑥 ) ) ) − ( ℜ ‘ 𝑥 ) ) = ( i · ( ℑ ‘ 𝑥 ) ) ) |
| 45 |
40 43 44
|
3eqtrd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( 𝑥 + - ( ℜ ‘ 𝑥 ) ) = ( i · ( ℑ ‘ 𝑥 ) ) ) |
| 46 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ℝ ⊆ 𝑅 ) |
| 47 |
38
|
renegcld |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → - ( ℜ ‘ 𝑥 ) ∈ ℝ ) |
| 48 |
46 47
|
sseldd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → - ( ℜ ‘ 𝑥 ) ∈ 𝑅 ) |
| 49 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
| 50 |
49
|
subrgacl |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ 𝑅 ∧ - ( ℜ ‘ 𝑥 ) ∈ 𝑅 ) → ( 𝑥 + - ( ℜ ‘ 𝑥 ) ) ∈ 𝑅 ) |
| 51 |
8 22 48 50
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( 𝑥 + - ( ℜ ‘ 𝑥 ) ) ∈ 𝑅 ) |
| 52 |
45 51
|
eqeltrrd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( i · ( ℑ ‘ 𝑥 ) ) ∈ 𝑅 ) |
| 53 |
25 32
|
rereccld |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( 1 / ( ℑ ‘ 𝑥 ) ) ∈ ℝ ) |
| 54 |
46 53
|
sseldd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( 1 / ( ℑ ‘ 𝑥 ) ) ∈ 𝑅 ) |
| 55 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
| 56 |
55
|
subrgmcl |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( i · ( ℑ ‘ 𝑥 ) ) ∈ 𝑅 ∧ ( 1 / ( ℑ ‘ 𝑥 ) ) ∈ 𝑅 ) → ( ( i · ( ℑ ‘ 𝑥 ) ) · ( 1 / ( ℑ ‘ 𝑥 ) ) ) ∈ 𝑅 ) |
| 57 |
8 52 54 56
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( ( i · ( ℑ ‘ 𝑥 ) ) · ( 1 / ( ℑ ‘ 𝑥 ) ) ) ∈ 𝑅 ) |
| 58 |
37 57
|
eqeltrd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → i ∈ 𝑅 ) |
| 59 |
58
|
adantrr |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → i ∈ 𝑅 ) |
| 60 |
|
imcl |
⊢ ( 𝑦 ∈ ℂ → ( ℑ ‘ 𝑦 ) ∈ ℝ ) |
| 61 |
60
|
ad2antll |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → ( ℑ ‘ 𝑦 ) ∈ ℝ ) |
| 62 |
15 61
|
sseldd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → ( ℑ ‘ 𝑦 ) ∈ 𝑅 ) |
| 63 |
55
|
subrgmcl |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ i ∈ 𝑅 ∧ ( ℑ ‘ 𝑦 ) ∈ 𝑅 ) → ( i · ( ℑ ‘ 𝑦 ) ) ∈ 𝑅 ) |
| 64 |
14 59 62 63
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → ( i · ( ℑ ‘ 𝑦 ) ) ∈ 𝑅 ) |
| 65 |
49
|
subrgacl |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℜ ‘ 𝑦 ) ∈ 𝑅 ∧ ( i · ( ℑ ‘ 𝑦 ) ) ∈ 𝑅 ) → ( ( ℜ ‘ 𝑦 ) + ( i · ( ℑ ‘ 𝑦 ) ) ) ∈ 𝑅 ) |
| 66 |
14 18 64 65
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → ( ( ℜ ‘ 𝑦 ) + ( i · ( ℑ ‘ 𝑦 ) ) ) ∈ 𝑅 ) |
| 67 |
13 66
|
eqeltrd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → 𝑦 ∈ 𝑅 ) |
| 68 |
67
|
expr |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( 𝑦 ∈ ℂ → 𝑦 ∈ 𝑅 ) ) |
| 69 |
68
|
ssrdv |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ℂ ⊆ 𝑅 ) |
| 70 |
11 69
|
eqssd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → 𝑅 = ℂ ) |
| 71 |
70
|
olcd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( 𝑅 = ℝ ∨ 𝑅 = ℂ ) ) |
| 72 |
71
|
ex |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) → ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) → ( 𝑅 = ℝ ∨ 𝑅 = ℂ ) ) ) |
| 73 |
72
|
exlimdv |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) → ( ∃ 𝑥 𝑥 ∈ ( 𝑅 ∖ ℝ ) → ( 𝑅 = ℝ ∨ 𝑅 = ℂ ) ) ) |
| 74 |
73
|
imp |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ∃ 𝑥 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( 𝑅 = ℝ ∨ 𝑅 = ℂ ) ) |
| 75 |
7 74
|
sylan2b |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑅 ∖ ℝ ) ≠ ∅ ) → ( 𝑅 = ℝ ∨ 𝑅 = ℂ ) ) |
| 76 |
6 75
|
pm2.61dane |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) → ( 𝑅 = ℝ ∨ 𝑅 = ℂ ) ) |
| 77 |
|
elprg |
⊢ ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → ( 𝑅 ∈ { ℝ , ℂ } ↔ ( 𝑅 = ℝ ∨ 𝑅 = ℂ ) ) ) |
| 78 |
77
|
adantr |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) → ( 𝑅 ∈ { ℝ , ℂ } ↔ ( 𝑅 = ℝ ∨ 𝑅 = ℂ ) ) ) |
| 79 |
76 78
|
mpbird |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) → 𝑅 ∈ { ℝ , ℂ } ) |